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Executive Summary 
This third and final version of this deliverable. The first version was in December 2021, the 
second version January 2023, and this final version December 2023. In this version, the 
section on net land CO2 fluxes has been rewritten, the section on CH4 has had extensive 
updates, and the section on fossil CO2 emissions has been updated and revised with the latest 
data available.  
The aim of the deliverable is to identify, quantify and explain divergences between global 
inventories, atmospheric inversions, process models, and national inventories submitted to 
the UNFCCC. We present consistent comparisons of CO2 and CH4 emission estimates for 
various countries to highlight interesting and relevant aspects. We cover fossil CO2 emissions, 
net land CO2 fluxes, and anthropogenic CH4 emissions. Most of the data products are from 
the VERIFY project, with a gradual inclusion of CoCO2 products as the project evolves, and 
some independent datasets.  
Progress has been made on making comparisons across datasets, but significant gaps 
remaining in harmonising system boundaries, providing relevant information on uncertainty, 
and explaining why data products differ.  

• For fossil CO2 emissions, the importance of adjusting for harmonised system 
boundaries was demonstrated and that describing differences requires detailed 
comparison of components (e.g., fossil fuel category or sectors). The fossil CO2 
inversions show proof of concept, but so far lack uncertainty information for a full 
analysis.  

• For net land CO2 fluxes, comparisons were made with inventories in three groups: 1) 
bookkeeping models, 2) process-based models, and 3) inversions. System boundary 
issues remain highly problematic in the land-sector, even when comparing similar 
models together, and this is an area that requires significantly more research. Lack of 
data availability and comparability hinders comparisons (particularly for bookkeeping 
models, process-based models, and inventories), as does knowledge of how well 
some data products are constrained by observations (particularly inversions).  

• For CH4 emissions, divergences between inventories can be linked back to differences 
in activity data or emission factors, but this data can be difficult to obtain. For the 
inversions, the general magnitudes and trends agree, but uncertainties remain large. 
More effort is needed on providing relevant uncertainty information, particularly more 
detail on the priors, and the extent to which observations are constraining results 
leading to statistically significant differences with inventories. 

A consistent conclusion across all components analysed is the difficulty of harmonising 
datasets into a comparable format. The tradition of comparing totals of datasets as published 
is easy, but problematic. Dataset providers should consider this issue, and data should be 
presented in a way that (i) makes the system boundary very clear, and (ii) provides 
breakdowns of the total into components, where possible. To reconcile differences between 
alternative datasets requires a much deeper understanding of each dataset, such as the 
methods and input data sources, detailed output of models that go beyond aggregated totals, 
and providing considerably more information on uncertainties to help understand when 
differences are statistically significant. Often the necessary data is not easily accessible or is 
time consuming to access or negotiate access. A systematic reconciliation and comparison 
will likely require a close dialogue between data providers and inventory experts, together with 
the analyst. There remain considerable barriers to facilitate robust comparisons, but these 
barriers can be dealt with through community efforts. 
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1 Introduction 
Background 
Emissions and removals of greenhouse gases (GHGs), including both anthropogenic and 
natural fluxes, require reliable quantification, including estimates of uncertainties, to support 
credible mitigation action under the Paris Agreement. Reported inventory-based emissions 
and removals are generally estimated using ‘bottom-up’ inventory estimates. ‘Top-down’, 
observation-based estimates can provide complimentary monitoring and verification of the 
bottom-up emission estimates. These independent estimates can be performed at multiple 
scales and for a variety of applications: the global and continental scale for science purposes, 
country scale for reporting to the UNFCCC, sub-country scale for urban planning, and point 
sources like large power plants for verification (Pinty et al., 2019), to name just a few examples. 
Bottom-up inventory estimates have generally assumed to follow the IPCC reporting 
guidelines. In general, bottom-up inventory estimates are a combination of activity data (e.g., 
fuel use) and associated emission factors (e.g., emissions per fuel use). However, in many 
cases, bottom-up inventory estimates can be a complex combination of different approaches, 
including the use of actual continuous gas measurements at specific point sources or 
modelling based on numerous data sources (e.g., transport emissions modelling using traffic 
data and fleet databases). The development of bottom-up inventory estimates with higher 
spatial (gridded) and temporal (daily, hourly) resolution may also rely on different observational 
datasets. Particularly in the land sector, bottom-up estimates may involve a considerable 
amount of modelling and observation datasets (e.g., forest inventories). The term ‘bottom-up’ 
can therefore connote several different things, and we rather refer to datasets by name as 
opposed to whether they are ‘bottom-up’.  
Top-down observational estimates combine prior inventory estimates with a variety of 
observations to provide valuable constraints on the inventories (Deng et al., 2022). The main 
distinction is that top-down estimates generally use an inversion, or some other sort of model, 
together with a variety of observations, to provide estimates of emissions that can then be 
compared with the bottom-up inventory estimates. Since atmospheric concentrations respond 
to the sum of all emissions and removals, inversion-based estimates are less suited to provide 
information on individual sectors (unless they are geographically separated), though due to 
high resolution, observation-based approaches are particularly suited to identify point sources 
or small geographical areas like cities.  
Bottom-up inventories and top-down observational estimates are complementary and should 
be used together to improve and build trust in National Greenhouse Gas Inventories (NGHGIs) 
reported to the UNFCCC. With dense observation networks and measurements of auxiliary 
parameters such as isotopic composition of GHG or concentrations of co-emitted gases, 
additional source-specific information can be gained to support the validation of national 
emission inventories at smaller spatial scales. Observation-based estimates can be 
particularly valuable for trace gases with large uncertainties in their emissions (Maksyutov et 
al., 2019). 
In the context of providing recommendations for the implementation of an observation-based 
operational anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) 
capacity within the Copernicus programme, one objective of CoCO2 is to provide inputs to the 
Global Stocktake (GST) process, in the form of anthropogenic CO2 and CH4 emission products 
for the first GST (2023), at a spatial scale consistent with GST requirements. CoCO2 identified 
the relevant needs for the periodic GST through the development of a User Requirement 
Document (URD). The work described in this document represents the starting point for future 
syntheses to serve future GSTs. 
This document is an extension of reconciliation reports and country analysis produced under 
the VERIFY project (Andrew, 2020; Petrescu et al., 2020; Petrescu et al., 2021a; Petrescu et 
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al., 2021b; McGrath et al., 2023; Petrescu et al., 2023b), but this document has a more global 
focus. We identify and analyse CO2 and CH4 emissions from a selection of countries to identify 
differences with UNFCCC National GHG Inventories (NGHGI), and thereby identify countries 
or sectors where observation-based estimates can complement NGHGIs. We choose 
countries that show interesting or relevant differences. This document is the third and final in 
a series of three, due at the end of each year of the project (December 2021, December 2022, 
December 2023). This report is structured as follows: Chapter 1 presents the background, 
scope and objectives of this work, Chapter 2 the methodologies, Chapter 3 focuses on the 
fossil and net land CO2 fluxes, Chapter 4 presents the CH4 results both total and sectoral, and 
the report ends with discussions, conclusions and outlines future needs for research in 
Chapter 5. 

Scope of this deliverable 
The scope of this deliverable is to compare annual observation-, inventory-, and model-based 
emissions (CO2 and CH4) and removals (CO2) estimates against UNFCCC NGHGIs for a 
selection of countries, generally the largest emitters. We use data products from VERIFY, 
CoCO2, and other independent datasets. We focus on fossil CO2 emissions, net land CO2 
fluxes, and anthropogenic and natural CH4 emissions.  
Changes for this third and final version of the deliverable include: 

• Fossil CO2 emissions 
o Update to most recent data 
o Include uncertainty bounds on UNFCCC and EDGAR 
o Updated inversions 

• Land CO2 fluxes 
o Update to most recent data 
o Apply managed land masks and lateral fluxes, where possible 
o Provide deeper explanation of differences between datasets  

• Anthropogenic and natural CH4 emissions  
o Update to most recent data and include new datasets 
o Compare priors between all datasets (activity data and emission factors) 
o Plot anthropogenic and natural CH4 emissions for eight global emitters and 

reconcile inventory- and observation-based estimates 
• Recommendations for future reconciliation procedures 

2 Methodologies 
UNFCCC National Greenhouse Gas Inventories (NGHGI, 2023) emissions (CO2 and CH4) 
and removals (CO2) are compiled by individual countries, with Annex I Parties to the UNFCCC 
required to report emissions inventories annually using the Common Reporting Format (CRF). 
The reported data is generally for the period 1990 to N-2 (two years before the current year), 
but some countries provide data for earlier or later periods. The non-Annex I Parties report 
their estimates in Biennial Update Reports (BURs) submissions to the UNFCCC, but since 
these reports are in irregular formats they require manual compilation to obtain a cross-country 
dataset. For CH4 we use the original BURs, while for net CO2 land fluxes we used Grassi et 
al. (2023). 

Fossil CO2 emissions 
The different fossil CO2 emission data and methods are summarised in Table 1.  
The bottom-up inventory-based fossil CO2 estimates are presented and split per fuel type and 
reported for the last year when all data products are available, an update to Andrew (2020).  
The top-down atmospheric inversions for fossil CO2 emissions are based on co-emitted 
species. To overcome the current lack of CO2 observation networks suitable for the monitoring 
of fossil fuel CO2 emissions at national scale, this inversion is based on atmospheric 
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concentrations of co-emitted species: CO and NO2. While the spatial and temporal coverage 
of these CO and NO2 observations is large, the conversion of the information on these co-
emitted species into fossil fuel CO2 emission estimates is complex and carries large 
uncertainties. We have not been able to fully characterise the uncertainty in the inversions, 
therefore limiting our ability to compare to inventories.  

Net land CO2 flux 
The net land CO2 fluxes include CO2 emissions and removals from LULUCF activities, based 
on inventories, bookkeeping models, process models, and inversion estimates (Table 2). We 
considerably rewrote the net land CO2 flux section in this version of the deliverable. We split 
the figures into three sets, based on bookkeeping models, land-surface models, and 
inversions. 
We consider inventories from the UNFCCC (Annex I), the FAO, and a compilation of UNFCCC 
inventories for Annex I countries (CRFs) and non-Annex I countries (BURs) (Grassi et al., 
2023). We consider three bookkeeping models (BLUE, H&C, OSCAR) based on the Global 
Carbon Budget (Friedlingstein et al., 2022b). For the land-surface models, we use an 
ensemble of dynamic global vegetation models (DGVMs) TRENDYv10 from GCP2021 
(Friedlingstein et al., 2022a). For the top-down observational-based estimates, we use inverse 
model results from GCP2021 (Friedlingstein et al., 2022a) and an improved CAMS inversion 
including lateral fluxes and managed land masks (Chevallier et al., 2005; Chevallier, 2021).  

Anthropogenic and natural CH4 emissions  
The bottom-up inventory-based estimates for CH4 anthropogenic emissions come from the 
UNFCCC NGHGIs (2023), three global inventories: EDGAR v7.0, FAOSTAT (with PRIMAP) 
and GAINS (Table 3) and one CoCO2 product, TNO_PED18-21. These estimates are not 
completely independent from NGHGIs (see Figure 4 in Petrescu et al. (2020)) as they integrate 
their own sectorial modelling with the UNFCCC data (e.g. common activity data (AD) and IPCC 
emission factors (EFs)) when no other source of information is available.  
In this version of the report, we also present data for natural CH4 emissions, for both EU and 
the top emitters. They include emissions from the geological sources, inland waters (lakes, 
rivers, and reservoirs), biomass burning, wetlands and mineral soils.  
The top-down observation-based estimates from atmospheric inversions combine 
atmospheric observations, transport and chemistry models and estimates of GHG sources 
with their uncertainties, to estimate emissions. Emission estimates from inversions depend on 
the data set of atmospheric measurements and the choice of the atmospheric model, as well 
as on other settings (e.g., prior emissions and their uncertainties). For CH4, we use data from 
both regional (EU) and global inversions developed in the VERIFY and CoCO2 projects as 
following: the CIF intercomparison (Berchet et al., 2021), CoCO2 CH4 results from CAMS 
v21r1 (2 runs) and TM5-4DVAR (TROPOMI), and from third parties such as MIROC4-ACTM 
(2 runs), CEOS (GOSAT) and CEOS-Chem (TROPOMI) for USA only (Saunois et al., 2020). 
Inversion priors are summarized here: Priors - Google Sheets. 
 

https://docs.google.com/spreadsheets/d/1YcSYvoBJqMDzncgkbkyk7_SwoIiD35lEZDIZTzVE9bY/edit#gid=0


Table 1: Data sources for the fossil CO2 emissions included in this study 

 

CO2 anthropogenic 

 Data/model name Contact / lab Species / Period Reference/Metadata 

 UNFCCC NGHGI (2023) UNFCCC Anthropogenic fossil CO2 

1990-2021 

IPCC Guidelines for National Greenhouse Gas Inventories  (IPCC, 2006) 

UNFCCC NIRs/CRFs (UNFCCC, 2022) 

BU Compilation of multiple 
CO2 fossil emission data 
sources (Andrew, 2020): 
EDGAR, BP, EIA, CDIAC, 
IEA, GCP, CEDS, 
PRIMAP 

 

CICERO CO2 fossil country totals and split by fuel type 

1990-2022 (or last available year) 

EDGAR v7.0_GHG (Crippa et al., 2022)  

Energy Institute, 2023: https://www.energyinst.org/statistical-review 

US Energy Information Agency (EIA), https://www.eia.gov/international/data/world  

CDIAC, https://energy.appstate.edu/research/work-areas/cdiac-appstate  

International Energy Agency (IEA), https://www.iea.org/data-and-statistics/data-
product/greenhouse-gas-emissions-from-energy  

CEDS (O'Rourke et al., 2021) 

Global Carbon Product (GCP) (Friedlingstein et al., 2023)  

PRIMAP-hist (Gütschow and Pflüger, 2022) 

Regional Emission inventory in ASia (REAS) (Kurokawa and Ohara, 2020) 

Multi-resolution Emission Inventory model for Climate and air pollution research 
(MEIC), http://meicmodel.org.cn  

TD Fossil fuel CO2 inversions LSCE Inverse fossil fuel CO2 emissions  

2005-2020 

VERIFY Deliverable D2.12 (Fortems-Cheiney and Broquet, 2021a), update of 
Deliverable D2.11 (Fortems-Cheiney and Broquet, 2021b) 

 

https://www.eia.gov/international/data/world
https://energy.appstate.edu/research/work-areas/cdiac-appstate
https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy
https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy
http://meicmodel.org.cn/
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Table 2: Data sources for the land CO2 emissions included in this study 

Product Type / file or 
directory name 

Contact / lab Variables / Period References 

Inventories 
UNFCCC NGHGI (2023) UNFCCC  LULUCF Net CO2 emissions/removals Based on IPCC Reporting Guidelines (IPCC, 2006) 

UNFCCC Annex 1 CRFs https://unfccc.int/ghg-inventories-annex-i-parties/2022 

Grassi et al (2023) Giacomo Grassi LULUCF Net CO2 emissions/removals Based on compilation of UNFCCC (2022) inventories and UNFCCC BURs: 
https://unfccc.int/BURs (Grassi et al., 2023) 

FAO FAOSTAT CO2 emissions/removal from LULUCF 
sectors 

(Federici et al., 2015; Tubiello et al., 2021) 

Bookkeeping models 
BLUE  LMU Munich Net C flux from land use change, split into 

the contributions of different types of land 
use (cropland vs pasture expansion, 
afforestation, wood harvest) 

Hansis et al. (2015) as updated in Friedlingstein et al. (2023) 

H&C Woodwell Climate 
Research Center 

Net C flux from land use change, split into 
the contributions of different types of land 
use (cropland vs pasture expansion, 
afforestation, wood harvest) 

Houghton and Castanho (2023) as updated in Friedlingstein et al. (2023) 

OSCAR  IIASA Net C flux from land use change, split into 
the contributions of different types of land 
use (cropland vs pasture expansion, 
afforestation, wood harvest) 

Gasser et al. (2020) as updated in Friedlingstein et al. (2023) 

Process-based models 
TRENDY v10 (2020) MetOffice UK Land related C emissions (NBP)  Friedlingstein et al. (2022a) and references therein. 

Inversion models 
GCP 2021 

 

GCP Total CO2 inverse flux (NBP) 

6 global inversions (CTE, CAMS, 
CarboScope, UoE, CMS-Flux, NISMON-
CO2) 

Friedlingstein et al. (2022a) and references therein. 

 

CAMS via CoCO2 LSCE CO2 fluxes, includes lateral fluxes and a 
managed-land mask 

Chevallier (2021) 

 

Lateral flux adjustments (v4.1) LSCE Lateral fluxes for all components Chevallier and Ciais (personal communication, December 2023) 

https://unfccc.int/ghg-inventories-annex-i-parties/2022
https://unfccc.int/BURs


Table 3: Data sources for the CH4 emissions included in this study 
Name Domain Description Contact / lab References 

details in Petrescu et al. (2023a) 
Status compared to 
Petrescu et al., 2023 

and D8.2 
CH4 Bottom-up anthropogenic   

UNFCCC NGHGI 
(2023) CRFs and 
BURs  

 EU CH4 emissions  
1990-2021 

MS inventory agencies   
Yearly uncertainties provided by the 
EU GHG inventory team  

UNFCCC CRFs, 
https://unfccc.int/ghg-inventories-
annex-i-parties/2023  
UNFCCC BURs, 
https://unfccc.int/BURs    

Updated 

EDGAR v7.0  EU and global Total and sectoral global 
CH4 emissions  
1990-2021  

EC-JRC  Crippa et al., 2020  
Crippa et al., 2019 JRC report  
Janssens-Maenhout et al., 2019  
Solazzo et al., 2021  

Updated  

GAINS  EU and global Total and sectoral global 
CH4 emissions  
1990-2020  

IIASA  
   

Höglund-Isaksson, L. 2017  
Höglund-Isaksson, L. et al., 2020  

Updated  

FAOSTAT  EU and global Global CH4 agriculture and 
land use emissions, as well 
as for other sectors (based 
on PRIMAP)  
1990-2020  

FAO  
   

Tubiello et al. 2013  
Tubiello, 2019, 2022 
FAO, 2015, 2023 
   
   

Updated  

TNO_CoCO2_PED
18-21 

Global Prior emissions dataset for 
2018 and 2021 developed 
by TNO 

TNO CoCO2 D2.1 and D2.2 

https://www.coco2-project.eu/  

 

CH4 bottom-up natural  

LPJ-GUESS  Global Global CH4 emissions from 
wetlands, 1990-2021  

U Lund  Wania et al., 2009 
Wania et al., 2010 
Spahni et al., 2011 
Zhang et al., 2021 

New 

JSBACH-
HIMMELI 

EU European CH4 emissions 
from peatlands and mineral 
soils, 2005-2020  

FMI Raivonen et al., 2017 
Susiluoto et al., 2018 

Not updated 

DAAC ORNL  Global Global CH4 emissions from 
lakes (2003-2015) and dam-
reservoirs (2002-2015)  

NASA  Johnson et al. 2021 and 2022  New 

Geological 
emissions 

Global Global grid geological CH4 
emission model (2019)  

Istituto Nazionale di Geofisica e 
Vulcanologia (INGV)  

Etiope et al., 2019 and current work 
(updated activity data)  
   

Updated   

https://unfccc.int/ghg-inventories-annex-i-parties/2023
https://unfccc.int/ghg-inventories-annex-i-parties/2023
https://unfccc.int/BURs
https://www.coco2-project.eu/
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GFED4.1s  Global Biomass burning global 
CH4 emissions, 2000-2020  

VU Amsterdam  van der Werf et al., 2017  not updated  

CH4 top-down natural and anthropogenic  
FLExKF-v2023  
   

EU Regional total CH4 
emissions from inversions 
with uncertainty, 2005-
2021  

EMPA Brunner et al., 2012  
Brunner et al., 2017  
Segers et al., 2020 

Updated  

CAMS v21r1   Global Total and source split 
partitions for global CH4 
emissions 
NOAA (1979-2021) 
NOAA_GOSAT (2009-
2021)  

TNO Huijnen et al., 2010 
Pandey et al., 2022 
Segers et al., 2022 

New 

CTE-GCP2021  
   

Global Total global CH4 emissions 
with source split partitions 
and posterior flux 
uncertainty  
2000-2020 

FMI Bruhwiler et al., 2014  
Houweling et al., 2014  
Giglio et al., 2013  
Ito et al., 2012  
Janssens-Maenhout et al., 2013  
Krol et al., 2005  
Peters et al., 2005  
Saunois et al., 2020  
Stocker et al., 2014  
Tsuruta et al., 2017  

New 

CIF-CHIMERE 
and 
CIF-
FLEXPARTv10.4 

EU Total regional CH4 
emissions from inversions  
CHIMERE: 2005-2022 
FLEXPART: 2005-2020 

LSCE, NILU Berchet et al., 2021  
Fortems-Cheiney et al., 2021  

New and updated 

MIROC4-ACTM 
(control and OH 
varying runs)  

Global Total and source split 
partitions for global CH4 
emissions (2 runs: control 
and variable OH), 2001-
2021  

JAMSTEC Patra et al., 2021  
Chandra et al., 2021  

New  

TM5-4DVAR 
(TROPOMI) 

Global Total and source split 
partitions for global CH4 
emissions, 5/2018-2020  

VUA Huijnen et al., 2010 
Lorente et al., 2023 

New  

GEOS-Chem CTM 
(TROPOMI for 
USA) 

USA Total CH4 emissions for 
USA, 2019 
  

Harvard University Nesser et al., 2023  New 

CEOS (GOSAT)  Global Total and source split 
partitions for global CH4 
emissions, 2019  

NASA/JPL Worden et al., 2019 New 

  



Other common methodological issues 
In the figures presented in this report, we essentially plot the various inversions and inventory 
methods on the same figure, to allow a visual comparison. There has not been a full 
uncertainty analysis, that would for example, quantify if one dataset has a statistically 
significant difference to another. Very few datasets provide uncertainty information. Methods 
to present the results, including uncertainties, need to be improved. Additionally, methods are 
needed to assess the statistical significance of any differences, given reported uncertainties. 
System boundary issues are a challenge for all comparisons made here. Independent 
estimates often have different system boundaries. These can sometimes be minor, but at other 
times (e.g., land) be significant. Relevant system boundary issues are discussed in each 
section below, but here we discuss some key issues. 
A general system boundary issue is masking of gridded results to the country level, where it 
is important that it is known how modelling groups have defined emissions in each grid cell 
and to ensure the mask correctly captures country and economic zone effects, in line with how 
official NGHGIs are reported. Give the coarse grid in many datasets, results for small countries 
may be less reliable. 
In a UNFCCC context, the net uptake on land (LULUCF) is defined based on a ‘managed land 
proxy’. This proxy was originally intended to represent anthropogenic activities, and is defined 
to cover land “where human interventions and practices have been applied to perform 
production, ecological or social functions” (IPCC, 2006). Countries do not report spatial grids 
of their manged land definitions, but “intact” and “non-intact” forest area has been found to be 
a good proxy for unmanaged and managed land (Grassi et al., 2021). Applying a non-intact 
forest area mask to the net land CO2 flux in an inversion model or DGVM is one way to 
approximate the system boundary of LULUCF in NGHGIs. Another issue is that BMs only 
include direct human-induced effects, while NGHGIs also include environmental factors (such 
as CO2 fertilisation). We discuss various issues with this approach in the section on net land 
CO2 fluxes. 
International transport is not included in country totals in NGHGIs, but it is reported as a 
“memo” based on the sale of bunker fuels in each country (not the use of bunker fuels). A 
flight starting in France and landing in Poland would be classed as international, even though 
all the emissions occurred over EU territory. An inversion using satellite information, might see 
the emissions over each country in the flight path, but that would not appear in the NGHGI. 
The same problem applies to flights with a landing or take-off in the EU but landing a country 
outside of the EU. International shipping has the same issues, whether a shipping leaving 
Europe to cross the Atlantic or a ship along the Rhine crossing country borders.  
Despite the potential system boundary issue with international transport, it is unclear whether 
it is important yet. Inversions currently relying on in-situ observations would not be affected by 
this, as the observations would not detect the emissions emitted at cruising altitude. For this 
reason, the TNO emission inventories (from CoCO2 WP2), include landing and take-off of all 
flights, domestic and international, but not the emissions at cruising altitude. This could 
nevertheless be an issue for shipping, but the size of the source is probably below the 
detection limit of current inversion methodologies. As methods improve, and as satellite data 
are increasingly used, these second-order effects will need a more detailed assessment.  

3 Fossil CO2 emissions 
In this section we focus on fossil CO2 emissions (FCO2). These can be separated into 
emissions from the oxidation of fossil fuels (FFCO2) and chemical transformation of fossil 
carbonates into CO2, with different datasets having different coverage. While datasets often 
ultimately draw on the same energy data, methods to prepare the data and assumptions used 
to estimate CO2 emissions can differ. Thus, even though fossil CO2 emissions are thought to 
have relatively low uncertainty, care is still required to ensure consistency in comparisons.  
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Inventory-based estimates 
Figures 1, 2, 3, and 4 show fossil CO2 emissions (FCO2) from global datasets, both globally 
and for the EU27. ‘Raw’ totals from these datasets have differing system boundaries, meaning 
they don’t all include the same set of emissions sources. Harmonising is an attempt to remove 
these differences in coverage to provide more comparable estimates, partly to prevent the 
false inference of uncertainty relating to the spread of raw estimates. Further details are 
provided by Andrew (2020). Figures 1 and 3 show unharmonized inventories, while Figures 2 
and 4 show harmonised inventories. Importantly, our harmonization process is constrained by 
the level of detail published in individual datasets, and the harmonization is necessarily partial, 
not ending up exactly with apples-for-apples comparisons, but generally closer than 
comparing unharmonized data. 

 
Figure 1: Comparison of unharmonized global fossil CO2 emissions from multiple inventory 
datasets. 
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Figure 2: Comparison of global fossil CO2 emissions from multiple inventory datasets with 
system boundaries harmonised as much as possible. Harmonisation is limited by the 
disaggregated information presented by each dataset. 

Most datasets agree well within expected system boundary differences (Andrew, 2020). As 
reported in the previous version of this report (December 2021), we discovered that EIA’s 
estimates were high, and investigation showed that the emissions estimates had grown twice 
despite the underlying energy data remaining virtually unchanged. Contact with the EIA 
revealed they had introduced two separate errors leading to double-counting, and their 
correction led to a drop in EIA’s estimates of global fossil CO2 emissions by about 1 Gt CO2. 

 
Figure 3: Comparison of EU fossil CO2 emissions from multiple inventory datasets. CDIAC does 
not report emissions for countries that did not exist prior to 1992. The uncertainty whiskers at 
2015 indicate the uncertainty for EDGAR, while the uncertainty for CRF (UNFCCC reports) is 
shown as the shaded area. 
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Figure 4: Comparison of EU fossil CO2 emissions from multiple inventory datasets with system 
boundaries harmonised as much as possible. Harmonisation is limited by the disaggregated 
information presented by each dataset. CDIAC does not report emissions for countries that did 
not exist prior to 1992. The uncertainty whiskers at 2015 indicate the uncertainty for EDGAR, 
while the uncertainty for CRF (UNFCCC reports) is shown as the shaded area. 

For the bottom-up inventory-based estimates, it is possible to produce the figures for all 
countries. Figure 5 repeats the figures for the two largest emitters, China and USA, and figures 
for the next-largest emitters can be found in the Annex: India, Russia, Japan, Iran, Germany, 
Saudi Arabia, South Korea, and Indonesia. For China, the EIA estimates are significantly 
higher than others, and Andrew (2020) offers some explanation for this. Otherwise, the 
datasets are similar in most instances, but further work is ongoing to uncover the reasons for 
remaining divergences between these datasets. 
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Figure 5: Comparison of China (top) and USA (bottom) fossil CO2 emissions from multiple 
inventory datasets with system boundaries harmonised as much as published data detail 
allows.  

Atmospheric inversions 
The best top-down observation-based constraint on national scale estimates of anthropogenic 
CO2 emissions in Europe over more than the past decade are satellite measurements of NO2 
and CO, which are “proxy” species co-emitted with CO2 by fossil fuel combustion (FFCO2). 
These co-emitted species are used because detection of CO2 itself is currently hindered by 
the difficulty in distinguishing anthropogenic emissions of fossil CO2 from background 
concentrations, both natural and anthropogenic. Results from the first atmospheric inversions 
of the European FFCO2 emissions in VERIFY (Konovalov and Lvova, 2018); Petrescu et al. 
(2021a), indicated that there were much larger uncertainties associated with the assimilation 
of CO data than to that of NO2 data for such a purpose. 
In the first (D8.1) and second (D8.2) versions of this report we presented selected results from 
outputs from the VERIFY project (deliverable D2.11 and deliverable D2.12), which developed 
an atmospheric inversion workflow quantifying monthly and annual budgets of the national 
emissions of FFCO2 in Europe (Fortems-Cheiney and Broquet, 2021b; Fortems-Cheiney et 
al., 2021). In this version of the report, we present results from deliverable D6.5 of CoCO2, 
which include results using data streams from three different satellites, and both CO and NOx.  
This workflow, implemented in the Community Inversion Framework (CIF; Berchet et al., 
2021), estimates the co-emissions (i.e. CO or NOx) that when fed into a regional chemical 
transport model (CHIMERE; Menut et al., 2013) best match satellite-measured concentrations 
of that species, while simultaneously minimising the difference between these estimated 
emissions and those from the prior inventory dataset, TNO-GHGco-v2 or TNO-GHGco-v3 
(Denier van der Gon et al., 2020). This is a minimisation of least-squares optimisation process, 
solved iteratively (Rodgers, 2000; Chevallier et al., 2005). This workflow is applied over the 
period 2005-2022, depending on the satellite’s availability, on a 0.5°×0.5° grid. Ratios of 
FFCO2 emissions to CO or NOx emissions directly derived from TNO-GHGco-v3 for five 
sectors (energy, industry, residential, road transport and the rest of the sectors), for each 
country and each month are then used to estimate fossil CO2 emissions from the CO or NOx 
estimates produced by the inversion modelling. Several critical aspects of this workflow need 
to be highlighted: (i) we do not have reported estimates of the uncertainty in the final FFCO2 

1990 1995 2000 2005 2010 2015 2020
4200

4600

5000

5400

5800

6200 Mt Comparison of fossil CO2 emissions: United States of America

IEA v2023 (2)

GCP v2022 (1)

CDIAC v2022 (1)

BP v2023 (2,6)
PRIMAP-Hist v2.4.2 CR (1)

PRIMAP-Hist v2.4.2 TP (1)

EDGAR v7.0_GHG (2)

EIA v2022 (2,6)

CEDS 2021_04_21 (1)

CRF 2023 Energy

CRF 2023 Total (1)

Partially harmonised.
Includes Energy sector plus:

(1) all fossil fuels in IPPU
(2) some fossil fuels in IPPU

(6) bunker fuels

CoCO2 project



CoCO2  
 

D8.3 Third synthesis of CO2 and CH4 observation-based emission estimates 22 

emissions yet (ii) the FFCO2 emission budgets provided by the TNO-GHGco-v3 inventory are 
based on the emissions reported by countries to UNFCCC, which are assumed to be accurate 
in Europe, therefore the inversion prior estimate (which is also its initial estimate in the 
variational inversion framework) is consistent with the inventory estimates.  
The prior fossil emissions estimates provided by TNO include non-combustion emissions 
(prior estimates were FCO2, and not FFCO2), the effect of which has not yet been determined. 
However, given that the use of co-emitted species relies on the assumption that these are 
emitted during combustion, the inclusion of non-combustion emissions (e.g., process 
emissions in cement production) will introduce some error. 
Figure 6 shows the annual posterior fossil-CO2 estimates (CoCO2 Deliverable 6.5) compared 
with the prior estimates for the EU27 provided by TNO (GHGco v3). There are three separate 
inversion results, derived from three separate satellites. As discussed above, the similarity of 
the inversion estimates with the inventory estimates here does not indicate a verification of 
the inventory estimates, but rather suggests that the workflow functions well and that the 
inversion was not pulled away from its prior estimate by major lack of fit to the satellite CO/NO2 
data. Further work will be needed to make the inversion outputs more independent and less 
reliant on (prior) inventory estimates before they can be used for verification, and to derive 
robust estimates of the posterior uncertainties. Despite the agreement with the inventory 
estimates, Fortems-Cheiney and Broquet (2021b) indicate that the relative uncertainty in their 
estimates is likely very high (probably similar to that reported by Konovalov and Lvova (2018)) 
due to high uncertainties in both the NOx inversions and the conversion into FFCO2 emission 
estimates. This work is continuing. 
It appears that the extrapolation of the prior past 2019 was poor and has introduced 
divergence that the inversion model results follow, possibly because the uncertainty assigned 
to the extrapolation was too low. The official territorial estimates submitted the UNFCCC show 
a sharp decline in 2020 that the extrapolation did not capture. The reason that the UNFCCC 
emissions estimates lie below the prior in all years is largely because the prior includes 
emissions that would be categorised as international transport (particularly aviation, landing 
and take-off emissions) and therefore not included in territorial inventories. 

 
Figure 6: Comparison of inversion results for the EU27 with prior FFCO2 emissions estimated 
by the TNO-GHGco-v3 inventory (D6.5). The final two points of the prior have been extrapolated. 
The official EU submission to the UNFCCC is added for reference. Note that the proximity of the 
inversion results to the prior estimates is not a direct indicator of verification, without additional 
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information on the prior and posterior uncertainty and supporting statistical analysis (see 
discussion in the text). 

While we still lack quantified posterior uncertainty estimates, they are currently thought to be 
high. Therefore, the agreement of the inversion result with inventory estimates is encouraging 
but is insufficient to confirm either of the estimates. The close agreement tells us that the 
inversion approach has not found sufficient evidence that the inventories are incorrect. Some 
reasons for this are lack of spatial coverage, sensitivity to the surface in the data, and the 
relatively high level of observation uncertainties. Country-level results show in some cases 
near-perfect agreement between the inversion modelling output and inventory estimates. 
However, this generally results from insufficient satellite data (because of cloud cover) for 
these countries, and/or that emissions of NO2 are low (e.g., rural areas), such that minimal 
‘correction’ is obtained to adjust the prior (inventories). Thus far the work involved has been 
aimed at proving the concepts and building the required modelling infrastructure and workflow. 
One of the main constraints to reducing uncertainty in this approach is the current lack of 
observation networks dedicated to the monitoring of FFCO2 emissions, such as the planned 
constellations of satellite CO2 spectro-imagers (Fortems-Cheiney and Broquet, 2021b): “the 
uncertainties in the FFCO2 inversions presented here are still too high to attempt at using 
these inversions to improve the current knowledge on the FFCO2 national scale emission 
budgets in Europe, although further progresses are expected”.  

4 Net land CO2 fluxes 
Net land CO2 fluxes consistent of both emissions and removals, and due to lack of 
observations and high uncertainty, differences between datasets are hard to reconcile. There 
are also major challenges aligning system boundaries of different approaches. In this section 
we compare UNFCCC NGHGHIs with bookkeeping models, Dynamic Global Vegetation 
Models (DGVMs), and atmospheric inversions.  

The challenges in making comparisons in the land sector 
System boundary issues plague comparisons of net land CO2 fluxes. The question of how to 
define whether these carbon fluxes are anthropogenic is at the core of this issue (Grassi et 
al., 2018). The carbon cycle and land surface modelling communities (e.g., IPCC assessment 
reports) define anthropogenic carbon fluxes on land differently to the inventory community 
(e.g., IPCC guidelines), though methods have been developed to bridge the differences 
(Grassi et al., 2021; Grassi et al., 2023).  
There are two dimensions to this complex problem (Figure 7): 1) what land areas have 
anthropogenic changes, and 2) are environmental factors (CO2 fertilisation, climate, etc) and 
disturbances anthropogenic? The IPCC Guidelines (used in UNFCCC NGHGI) have defined 
a self-determined ‘managed land’ proxy as anthropogenic and include direct factors (e.g., 
land-use change), indirect factors (e.g., CO2 fertilisation), and natural factors (e.g., 
disturbance). ‘Managed land’ is land where human interventions and practices have been 
applied to perform production, ecological, or social functions (IPCC, 2006).  
Bookkeeping Models (BMs) were the first class of models to estimate net land CO2 fluxes. 
They report direct effects on land reported as having a land use change. They exclude indirect 
effects (CO2 fertilisation) and disturbances. For land-use changes, BMs consider processes 
such as deforestation, afforestation, reforestation, and depending on the model, shifting 
cultivation. They also consider wood harvest and forestry, where the land use does not change 
(it remains forest), but the forest grows back after harvest. Since BMs exclude indirect effects, 
the maximum carbon density in each land type remains constant even if environmental factors 
are changing (e.g., temperature, precipitation, CO2 concentration, etc). BMs are expected to 
differ to UNFCCC NGHGIs because of these system boundary issues (Grassi et al., 2023). 
Land surface models (LSMs) or Dynamics Global Vegetation Models (DGVMs) consider all 
land and all effects, but therefore results need to be disaggregated to the appropriate level to 
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facilitate comparisons with other datasets. The level of disaggregation provided in most 
analyses requires additional assumptions to do a comparison, in particular, a forest mask to 
consider only the managed land areas used in NGHGIs (Schwingshackl et al., 2022; Grassi 
et al., 2023). DGVMs consider interannual variability, through particularly temperature, 
precipitation, and CO2 concentration, which hinders comparisons with NGHGIs that generally 
have methods that average out interannual variability (e.g., National Forest Inventories). 
Previous comparisons have shown that differences between DGVMs and NGHGIs can be 
large (Grassi et al., 2018; Petrescu et al., 2020; Schwingshackl et al., 2022; Grassi et al., 
2023; McGrath et al., 2023), but it is possible to bridge them by combining BMs and DGVMs 
(Schwingshackl et al., 2022; Grassi et al., 2023).  
Atmospheric inversions consider all land and all effects but require a managed land mask and 
adjustments for lateral fluxes (Chevallier, 2021; Deng et al., 2022). Inversions are considered 
the most ‘independent’ method to compare with NGHGIs, but they require prior estimates of 
fluxes and a robust observation network to constrain results. If a managed land proxy is 
needed, then additional uncertainties arise. Robust comparisons also require lateral flux 
adjustments, such as land-to-sea fluxes and carbon transported by agricultural and forestry 
trade, to make them consistent with NGHGIs and other methods.  
A key question is what land areas and processes dominate emission estimates. Figure 7a 
shows a schematic of the different land areas and effects, and which aspects are covered by 
which methods. A weakness of earlier figures is that they do not give a general sense for 
which effects are dominant. This will vary by country, but generally, the uptake on ‘managed 
land’ where there is no land use change (e.g., particularly forest remaining forest) is argued to 
be the dominant effect (Grassi et al., 2023). Figure 7b gives some more realistic distributions 
and identifies key processes, though remaining hypothetical.  
The most problematic issue is how to allocate emissions or removals from forestland, 
particularly what we have labelled ‘other managed land’ and the magnitude of indirect effects 
(e.g., CO2 fertilisation). CO2 uptake in these areas could be due to recovery from previous 
disturbance, age-class effects in forestry activities, indirect effects like CO2 fertilisation, in 
addition to a range of other effects. Different methods and models will apportion different 
shares to these processes and this is also a key uncertainty understanding the future evolution 
of CO2 uptake in forestlands. 
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Figure 7: Land can be classified in different ways, and here it is classified on whether it is 
managed or unmanaged. The managed area can be classified involving a long-term (>20 year) 
area change (e.g., deforestation or afforestation), a temporary area change (e.g., wood harvest 
and regrowth), or no area change (e.g., forest remaining forest). Shifting cultivation is not 
included here. For a given area, the uptake can be from direct effects (e.g., uptake of carbon 
following a growth curve), indirect (e.g., enhanced uptake due to CO2 fertilisation), & natural 
effects (e.g., pest disturbance or wildfire). a) Different models cover different aspects, but it can 
be hard to decompose the effects across methods. b) In a hypothetical country, the relative size 
of the effects will depend on the area, and the area could vary considerably across model type. 
The vertical extent is the proportion of uptake by land type. The colours represent model and 
method groupings that cover the same processes and areas. 

Managed and unmanaged land 
The definition and identification of managed land is a crucial factor when comparing estimates. 
Countries self-determine the lands they define as managed, with most Annex I countries 
defining all land as managed (Figure 8). There is no agreed upon method to define managed 
land, and given the definition includes “production, ecological or social functions”, it is potential 
almost any land could be defined as managed. Indeed, Annex I countries seem to define most 
land as managed, with the biggest exceptions Canada and Russia. Grassi et al. (2023) 
develop a ‘managed forests’ mask using a database of intact (unmanaged) and non-intact 
(managed) forests. This mask is not necessary in countries where all land is managed, and 
so we focus particularly on some of those countries below to avoid masking issues. In 
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countries with unmanaged land, where a mask is needed, several additional issues arise. 
These are discussed in more detail in the relevant sections below. 

 
Figure 8: The share of different land types reported in UNFCCC Common Reporting Format for 
Annex I countries. Very little land is defined as unmanaged. 

From concepts to equations 
The conceptual framework (Figure 7) invites a more formal definition of the flux: 
DGVM(S3) = AM,LUC (Fdir+Find+Fdis) + AM,harvest (Fdir+Find+Fdis) + AM,other (Fdir+Find+Fdis) + AUM 
(Fdir+Find+Fdis) 
where AM,LUC is the managed land where there is land-use change, AM,harvest is the area for 
harvest shown separately here, AM,other is other managed land, and AUM is unmanaged land. 
Though, to make this distinction requires appropriate area masks, that in practice, would have 
to be highly resolve and a function of time. The carbon densities (tCO2/ha) are for Fdir direct 
effects, Find indirect effects, and Fdis disturbances. These could be defined so that Fdir has a 
steady-state carbon flux based on pre-industrial conditions, Fdir + Find is the steady-state for 
present conditions, and Fdis are the fluxes for disturbances (under some circumstances they 
could be assumed to average to zero). 
The different model types are expressed as 
NGHGI = AM,LUC (Fdir+Find+Fdis) + AM,harvest (Fdir+Find+Fdis) + AM,other (Fdir+Find+Fdis) 
BM = AM,LUC Fdir + AM,harvest Fdir 
Using these equations, the difference between the DGVMs and the NGHGI should just be a 
matter of careful mapping of land areas, using the correct carbon densities. The difference 
between BMs and NGHGIs would be 
NGHGI – BM = AM,LUC (Find+Fdis) + AM,harvest (Find+Fdis) + AM,other (Fdir+Find+Fdis) 
Grassi et al. (2023) argued that this gap can be bridged using DGVMs, though the TRENDY 
S2 experiment, which uses pre-industrial land areas and carbon densities: 
DGVM(S2) = AMPI Fdir + AUMPI * Fdir 

To combined with inventories requires removing the AUMPI through a land mask (Grassi et al., 
2023), leading to an estimate of the NGHGI using BMs and TRENDY S2: 
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NGHGIBM+S2 = BM + AM,otherPI Fdir = AM,LUC Fdir + AM,harvest Fdir + AM,otherPI Fdir 
The difference between this approach and the actual NGHGI is the ‘Loss of Additional Sink 
Capacity’ (Friedlingstein et al., 2023), as there is an inconsistency in the areas and carbon 
densities used. TheNGHGI and TRENDY S3 use transient carbon densities and areas, while 
S2 uses preindustrial areas and carbon densities, with a modern-day mask to correct for the 
relevant areas.  
Formulating the problem this way helps clarify several issues. Understanding areas is one 
important aspect, particularly how they differ between methods (AM,LUC, AM,harvest, AM,other) and 
the clarifying the carbon densities and how they are effected by environmental factors (like 
CO2 fertilisation). The land areas may also be defined differently in different methods. 
UNFCCC requires land to stay in a fixed category for 20 years (default). Afforestation (from 
grassland) would be GL-FL for 20 years and then transfer to FL-FL, even if it is still growing. 
While in a BM the land would forever remain CL-FL. For this reason, it may not be possible to 
compare afforestation and reforestation between NGHGIs and BMs.  
The construction of the TRENDY S2 and S3 simulations also create challenges. TRENDY S2 
assumes preindustrial land, while TRENDY S3 has dynamic land from preindustrial to current 
land. To correct for these land areas, various masks or additional adjustments are required 
(Ciais et al., 2022).  

Previous versions of this deliverable 
The net land CO2 fluxes are based on inventories, process models, and atmospheric 
inversions estimates from VERIFY, extended to include a CoCO2 inversion (using CAMS). In 
the first version of this report (D8.1), the bookkeeping models (BLUE, OSCAR, Houghton & 
Nassikas), inventory datasets (UNFCCC, FAO), the TRENDYv10 ensemble (min, median, 
max), the atmospheric inversions (min, mean, max), plus a CAMS inversion including lateral 
fluxes and a managed land mask (Chevallier, 2021) were all included on the same figure 
(Figure 9). The problem with this figure is that it mixes too many datasets with many different 
system boundaries, making comparisons difficult.  

 
Figure 9: A comparison of inventories and inversions land CO2 fluxes for the EU28 (EU27+UK). 
Shaded areas show maxima and minima of the TRENDY (grey) and GCP inversions (yellow). The 
figure is from the first version of this deliverable (D8.1). 
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In the second version of this deliverable (D8.2), the comparisons were separated by the type 
of model: 1) bookkeeping models, 2) land-surface models, and 3) inversion-based estimates. 
In each of these figures, the comparisons are made relative to the UNFCCC NGHGI estimates 
(Annex I countries) or the  estimates of Grassi et al. (2022) (non-Annex I countries).  
This version of the deliverable (D8.3) continues the separation by type of model, but 
additionally performs a deeper analysis by 1) comparing components of the bookkeeping 
models, 2) using country masks for TRENDY and making comparisons using both S2 and S3, 
and 3) using country masks and lateral flux adjustments for the inversions. Attempts are made 
to describe the country comparisons in more detail, with explanations for the differences. 
Several articles were published in the last 12 months that help further this version of the 
deliverable. Two articles were published that apply the TRENDY S2 adjustments to the BMs 
to map better to NGHGIs, allowing us to now use those methods (Schwingshackl et al., 2022; 
Grassi et al., 2023). An article comparing observation-, inventory-, and model-based estimates 
of CO2 emissions was published (McGrath et al., 2023), with Deng et al. (2022) doing a similar 
analysis for other countries. The Houghton and Nassikas BM has been updated (Houghton 
and Castanho, 2023). The BMs are all updated based on the latest Global Carbon Budget 
(Friedlingstein et al., 2023), but TRENDYv10 DGVMs and GCP2021 inversions are still used. 

Bookkeeping and inventory-based estimates 
Direct comparisons of BMs and NGHGIs do not make sense (section 4.1), without adjusting 
for ‘managed land’ (Grassi et al., 2023). Figure 10 shows the BM estimates and their average 
(Friedlingstein et al., 2023), together with an estimate of the NGHGIs at the global level (Grassi 
et al., 2023) and the average of the BMs added to the non-intact (‘managed’) forest estimate 
based on the median of the TRENDY S2 simulations with the non-intact forest mask (Grassi 
et al., 2023). The adjustment clearly brings the BMs and NGHGHIs in line. Adjusting the BMs 
for ‘managed land’ seems to be therefore highly important. The agreement at the global level 
is remarkably good, though, we further discuss regional results below. 

 
Figure 10: The net CO2 land flux as estimated in the Global Carbon Budget (from three BMs), as 
estimated using inventories (Grassi et al 2023), and as the sum of BMs (mean) and the TRENDY 
S2 mask to give non-intact (‘managed’) forests. 

Despite the importance of the ‘managed land’ adjustment, it remains relevant to compare 
components of BMs with components of NGHGIs. Comparisons with BMs may help 
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understand why the ‘managed land’ adjustment is needed and why it performs better in some 
regions than others (Schwingshackl et al., 2022). Figure 11 shows the results of the BMs for 
the global total, disaggregated into comparable components:  

• Total deforestation is relatively flat at the global level. Nearly 60% of total 
deforestation is “permanent deforestation” and the remainder is ‘shifting cultivation’ 
(not separated in the figure). Shifting cultivation is an agricultural practice where there 
is a cycle of cutting forest for agriculture and then abandoning, which is not uncommon 
in the tropics. There is a slight downward trend in permanent deforestation.  

• Total regrowth is composed of a flux due to af/reforestation (40%) and shifting 
cultivation (60%). Regrowth and deforestation in areas of shifting cultivation nearly 
cancel. Globally, the BMs collectively show a slight strengthening of the 
af/reforestation flux, particularly OSCAR, but af/reforestation is more than twice 
compensated by permanent deforestation. 

• Wood harvest and management is dominated by wood harvest, with management 
including only fire suppression. The wood harvest includes products that flow into a 
Harvested Wood Product (HWP) pool and decay over time, in addition to the regrowth 
of the harvest area (if not deforestation). Globally, this is a small net source. 

• Other transitions include transitions and fluxes on cropland, grassland, wetland, 
settlements, and similar. Globally, this is a small net source.  

The addition of the four components in Figure 11 and organic soils (not shown) gives the total 
ELUC flux from the BMs, as reported in the Global Carbon Budget (Friedlingstein et al., 2023). 

 
Figure 11: Components of the BMs by component, with the median of the three BMs shown as 
a solid line. Based on Friedlingstein et al (2023).  

These categories are commonly used in BMs and aid comparisons with NGHGIs, though the 
definitions are not always consistent. NGHGIs are based on land types, not processes, such 
as forestland, grassland, and cropland. Fluxes are allocated based on the land type. In a 
NGHGI, af/reforestation is allocated to forestland, but it is in a subcategory ‘conversion’ for 
20-years (default) and then ‘remaining’ forestland. In a BM, af/reforestation remain in the “total 
regrowth” category. Thus, the NGHGI ‘managed land’ uptake, may include significant uptake 
from earlier (>20 year) af/reforestation activities. This is one area where there may be double 
counting in the ‘managed land’ adjustment made to BMs. Likewise, in a NGHGI, deforestation 
is allocated to final land type. Thus, if a forest is deforested and becomes cropland, then it is 
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allocated to cropland (as a conversation for 20 years, then as remaining). The shifting 
cultivation flux included in BMs probably does not represent a land use change, and therefore 
may not appear in the NGHGI, as it likely happens within the 20-year transition period required 
for a land use transition. These differences between allocating to processes (BMs) and 
allocating land types (NGHGIs) make comparisons more difficult, but achievable. 
Figure 12 (EU27) shows the components of BMs mapped to the equivalent NGHGI land type, 
and estimates from Grassi et al. (2023) for the NGHGI (covering non-Annex I countries) and 
the TRENDY S2 non-intact forest estimates used as a proxy for ‘managed land’. It is possible 
to also disaggregate afforestation, but that is not done here for reasons of comparability 
(explained below). The NGHGI and Grassi et al estimates don’t agree exactly as Grassi et al 
(2023) have allocated organic soils on forestland, cropland, and grassland, to a separate 
component (‘organic soils’). The net-LULUCF fluxes do agree between the datasets as the 
total includes all components. The difference between NGHGIs and Grassi et al (2023) in the 
components therefore give an indication of the emissions attributed to organic soils. 
The forest flux (top-left) includes both the “wood harvest and other management” and “total 
regrowth”. The “wood harvest and management” uptake is small in the BMs for the EU27, with 
“total regrowth” dominating. The two components are combined for consistency with the 
NGHGI (forestland), though, comparisons can be made with regrowth as well. The IPCC 
Guidelines require a 20-year (default) transition period for a land use type to change. Thus, if 
grassland is converted to forest, it will remain in a forest “conversion” category for 20-years in 
the NGHGI and then be transferred to the ‘forest remaining forest’ category. If the forest 
continues to take up carbon after 20 years, this will continue in the NGHGI forest category. 
This is allocated differently in BMs, where the afforestation flux remains as regrowth and is 
not reallocated to another category. This would imply that the BM “total regrowth” category 
could be much larger than the NGHGI, which is true for the EU27 (not shown explicitly), but it 
is not known if this is the only reason.  
The non-intact (managed) forest adjustment (green) is of similar magnitude to the uptake in 
BLUE and H&C. In the Grassi et al. (2023) approach, this flux is added to the BMs, but in the 
case of the EU27, the corresponding adjusted BM estimates are too large (Figure 16), 
particularly if applied to BLUE and H&C and not the BM average. This is also the case for the 
USA (not shown). This warrants further investigation, on why the ‘managed land’ adjustment 
is too large in the EU27 and the USA. The EU27 has had intensive forest activities over the 
decades, and if these are represented in the historical data driving the BMs, then it could be 
expected that the BMs should have reasonable estimates of uptake on ‘managed land’. The 
problem is that this uptake occurs as ‘managed land’ in the NGHGI, as the af/reforestation 
activities that occurred more than 20 years ago are transfer to forestland. 
The total deforestation agrees well between NGHGIs, H&C, and OSCAR, but not BLUE, 
while the other transitions are higher in the NGHGIs. These differences may also relate to 
the 20-year accounting period used in the NGHGIs. If a forest is converted to grassland 
(deforestation), the flux will appear in the NGHGI ‘grassland conversion’ category 
(deforestation) and then after 20 years be placed in ‘grassland remaining grassland’ category 
(other transitions). In the BMs, all deforestation related fluxes will be allocated to deforestation. 
Thus, it may be necessary to compare after combining deforestation and other transitions. 
These differences still require further investigation.  
When comparing the BMs and the NGHGI with the net LULUCF flux, the issues with 
allocation and the 20-year transition period will partially cancel. In the EU27, the BMs are not 
that far from the reported NGHGI for the EU27, which means including the TRENDY S2 
‘managed land’ adjustment would overestimate the uptake (see also McGrath et al., 2023). 
This contrasts most other countries (Schwingshackl et al., 2022). For the EU27, the H&C BM 
maps very closely to the NGHGI, which is a point for further discussion, as it may be that the 
H&C input data sufficiently captures the land-use history in the EU27 and can therefore 
reproduce the current uptake. OSCAR on the other hand, barely gives any uptake in the EU27.   
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Figure 12: Net land CO2 flux for BMs by component for the EU27, with estimates also shown for 
Grassi et al (2023) with alternative NGHGI estimates and TRENDY S2 estimates of non-intact 
(managed) forests. The ‘non-intact’ uptake estimate is not added to the BMs here. 

The top three largest emitters for ELUC are Brazil, Indonesia, and the Democratic Republic of 
the Congo. For these countries, there is a relatively reasonable agreement between the BMs 
and NGHGIs (Schwingshackl et al., 2022; Grassi et al., 2023), particularly given the expected 
uncertainties for these countries. This is interesting, but likely represents shared input 
assumptions across the different BMs. We therefore do not make comparisons between BMs 
and the NGHGIs for those countries here. Another way to think about which countries to 
compare are the countries with the largest differences between the BM and the NGHGIs, thus, 
where the ‘managed land’ adjustment is most important. The countries with the biggest 
differences are, depending on BM, China, USA, Brazil (driven by OSCAR), Russia, and Congo 
(which may be more reflective of a poor NGHGI estimate). Interestingly, two of the regions are 
Annex I countries (EU27, USA), where one would assume better reporting and data 
availability. We focus next on China. 
China accounts for around 20% of the global gap between NGHGIs and BMs, and Figure 13 
compares BM and NGHGI components. The NGHGI includes large-scale afforestation, but 
this is not captured in the BMs or DGVMs (top left) (Schwingshackl et al., 2022). The NGHGI 
also reports zero deforestation, in contrast to the BMs. This raises the question whether the 
difference between the NGHGI and BMs is really driven by ‘managed forests’ or other factors, 
such as poor land-use transition data used as input into the BMs. Similar findings are found 
looking at other countries with big differences: are differences due to lack of sufficient input 
data for the BMs, incorrect NGHGIs, or the ‘managed land’ adjustment?  
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Figure 13: Net land CO2 flux for BMs by component for China, with estimates also shown for 
Grassi et al (2023) with alternative NGHGI estimates and TRENDY S2 estimates of non-intact 
(managed) forests. The ‘non-intact’ uptake estimate is not added to the BMs here. 

These comparisons, while only demonstrative, do not rule out the BMs as being useful for 
comparisons of NGHGIs. While the use of ‘managed land’ may, in general, help shift the BMs 
closer to NGHGIs (Schwingshackl et al., 2022; Grassi et al., 2023), this is not always the case 
at the regional level. It may be that for various data and reporting reasons, the BMs do 
reasonably well in some Annex I countries (e.g., the approach by H&C may be more consistent 
with NGHGIs). Alignment between BMs and NGHGIs could be coincidental in some instances. 
However, in other cases, there may be a clear reason for similarities. Since most of the EU 
land area is managed and the H&C takes a country level approach using FAO data that covers 
all land, then the similarity in estimates for the EU could imply the indirect effects are relatively 
small (Petrescu et al., 2020); essentially, H&C may have sufficient historical land use data and 
carbon densities to ‘spin up’ to the current land sink. BLUE and OSCAR use an alternative 
grid-based land-use product (LUH2), ultimately still relying on FAO data, but the data may not 
be sufficient to ‘spin up’ to the current land sink. OSCAR weighs various simulations that are 
partly driven by the H&C forcing (i.e. FAO and FRA) and partly by the LUH2 forcing. The 
assumed carbon densities in each approach is believed to be important in explaining different 
between approaches (Bastos et al., 2021). While the main difference between BMs and the 
NGHGI at the global level remains the ‘managed land’ uptake, the underlying reason at the 
country or regional level may be more nuanced (Schwingshackl et al., 2022). 
Most analysis so far has focused on comparing the average across BMs and the average 
across DGVMs (Schwingshackl et al., 2022; Grassi et al., 2023). However, when considering 
each BM individually, there can often be a BM that performs better than others and matches 
the NGHGI reasonably well. These individual BM comparisons need more work to understand 
what is driving the differences, and to what extent a ‘managed land’ adjustment is needed in 
all cases. A productive focus would be to see what land areas are driving the results in each 
region, across the different models and inventories. 

Inventory-based land-surface models 
As process-based land surface models, the Dynamic Global Vegetation Models (DGVMs), can 
provide additional details to inventories, and allow modelling of future evolution of the net land 
CO2 flux. The process-based models are forced by climate and therefore have interannual 
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variability, while bookkeeping models and inventories are based on data or methods that 
essentially smooth out variability. This makes comparisons more complicated. 
A total of 17 DGVMs follow a consistent protocol to allow model comparisons (Friedlingstein 
et al., 2022b). The different simulations in the TRENDY protocol are: 

• S0 is a control simulation using fixed pre-industrial (1700) atmospheric CO2 and a 
time-invariant pre-industrial land cover distribution, 

• S1 applies historical changes in atmospheric CO2 and Nitrogen inputs, 
• S2 applies S1 and climate, 
• S3 applies S2 and changing land cover distribution and wood harvest rates. 

The ‘natural’ land sink is given by S2 and the net land CO2 flux is given by S3, the difference 
(S3-S2) is comparable to the estimated land use flux from the BMs, after accounting for the 
‘Loss of Additional Sink Capacity’ (Friedlingstein et al., 2022b). There are three main choices 
on how to compare the TRENDY DGVM results with the UNFCCC NGHGIs: 

1. Compare BMs and the TRENDY LUC estimate (S3-S2) 
2. Compare NGHGHI with BMs adjusted for ‘managed forests’ (BM + mask S2) 
3. Compare NGHGHI and the TRENDY estimated net CO2 land flux (mask S3)  

Of these, the TRENDY S3 comparisons is most consistent with the UNFCCC NGHGIs system 
boundary, but a mask is needed to deal with ‘managed land’. We consider each of these 
comparisons in turn. 

NGHGIs versus Bookkeeping Models  
The difference between TRENDY S3 and TRENDY S2 should be equivalent to the BMs, after 
accounting for the ‘Loss of Additional Sink Capacity’ (LASC) (Friedlingstein et al., 2023). 
Figure 14 shows a comparison of the BMs, DGVMs (S3-S2), and NGHGI (Grassi et al., 2023). 
The NGHGI is expected to be lower than the BM and DGVM estimates, and this is discussed 
in the next section. The LASC represents a transient and increasing trend, and in this context, 
one could argue there is reasonably good agreement between the BMs and DGVMs.  
However, a more useful comparison is at the regional level.  
Figure 15 repeats the comparison for Brazil. The NGHGI is comparable to all other estimates 
here, suggesting the ‘managed land’ issue is not so important in Brazil. The advantage of 
looking at Brazil is that it has a very strong deforestation signal, which appears to peak in 
adjacent years across the datasets. The DGVMs (S3-S2) do not seem to pick up the 
deforestation signal, at least not to the strength reported in the BMs and NGHGHI. The choice 
of land-use data is important for estimating Brazilian LUC emissions (Rosan et al., 2021).  
While Brazil only represents one country, it indicates that the TRENDY and BM results in other 
countries may not pick up the deforestation signal. Conceptually, a direct comparison with 
NGHGIs and TRENDY S3, with appropriate forest mask, is the most consistent. Thus, a 
broader point here is whether the TRENDY S3 simulations will be suitable to compare to the 
NGHGIs. A comparison of the TRENDY S3-S2 simulations with the BMs indicates that 
TRENDY S3 may not always pick up the deforestation signal, which would imply it is not in 
the input land-use transition data (Rosan et al., 2021). If the input data is not sufficient, making 
a comparison of TRENDY S3 and NGHGIs more challenging, even if it makes sense 
conceptually. 
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Figure 14: A comparison of the global LUC estimates from BMs, the TRENDY DGVM individual 
(S3-S2) results and median, and the NGHGI estimated at the global level. 

 
Figure 15: A comparison of the global LUC estimates from BMs, the TRENDY DGVM individual 
(S3-S2) results and median, and the NGHGI for Brazil. 

NGHGIs versus Bookkeeping Models and ‘managed land’ proxy 
Grassi et al. (2023) developed a method to map between BMs and NGHGIs, using the 
TRENDY S2 simulations together with a mask of ‘managed forests’ (defined as intact forests). 
A key point here is that the method is developed as a mapping between BMs and NGHGIs, 
not as a means of verification of NGHGIs. TRENDY S3 may be a more direct means of 
verification of NGHGIs (next section). 
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Already in Figure 12 (EU27) and Figure 13 (China) we explored more detailed comparisons 
of NGHGIs and BMs, also showing the estimate of TRENDY S2 with a ‘managed land’ (non-
intact forest) mask. Figure 16 and Figure 17 perform the adjustment proposed by Grassi et al 
(2023), for the EU27 and China, to continue the discussion on these two countries previously. 
Performing the adjustment for the EU27 makes the carbon uptake larger than reported by the 
NGHGI. Though, interpreting this is difficult given the large spread in the BMs. It may be that 
the methodology and data used by H&C is able to capture the dynamics of the EU land sink, 
while OSCAR cannot. Decomposing the reasons behind the differences would require more 
analysis to understand the diverging results.  
The case in China is different, as the ‘managed land’ adjustment is not large enough to bridge 
the gap between BMs and NGHGIs. As argued by others (Schwingshackl et al., 2022), it could 
be that the BMs and DGVMs simply miss the large recent afforestation activities in China, or 
it could also be that China is overreporting uptake in its forests. The Grassi et al (2023) 
estimate, based on BURs, reports no deforestation for China despite significant estimates in 
the BMs (Figure 17).  

 
Figure 16: Estimated net land fluxes in the EU27 for the three BMs used in the GCB 
(Friedlingstein et al 2023) together with the UNFCCC estimated net-LULUCF flux, and the 
adjustment of the BMs with the TRENDY S2 (masked for non-intact forests). 
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Figure 17: Estimated net land fluxes in China for the three BMs used in the GCB (Friedlingstein 
et al 2023) together with the UNFCCC estimated net-LULUCF flux, and the adjustment of the BMs 
with the TRENDY S2 (masked for non-intact forests). 

While the adjustments using TRENDY S2 moves the BMs very close to the NGHGIs at the 
global level (Figure 10), the regional differences tell a different story. The EU27 and China are 
cases where the adjustment does not work so well. The Indonesia results show close 
agreement between NGHGIs and BMs (not shown), but this may be because they are 
dominated by overlapping datasets for organic soils. Brazil also shows generally good 
agreement (not shown), despite some noise, but again, there is perhaps surprisingly good 
agreement between BMs and the adjustment is not doing that much to move the estimates. 
The USA, on the other hand, demonstrates a large variation (not shown). It is perhaps 
disturbing that the TRENDY S2 adjustment performs poorly in regions like the EU27 and the 
USA, where one would expect the best quality area and carbon density data. The generally 
good performance in Indonesia and Brazil may represent that the signal is dominated by 
deforestation, and the TRENDY S2 adjustment, though large, offers small relative gains. There 
is clearly a need for more research to understand why the BMs deviate from the NGHGIs and 
why the TRENDY S2 adjustment works almost perfectly at the global level, despite patchy 
performance at the regional level. 

NGHGIs versus TRENDY S3  
We argue here that if the purpose is to compare NGHGIs with independent datasets, then one 
would best compare NGHGIs with TRENDY S3, which has dynamic land use and changing 
climate and CO2 concentrations. This is most consistent with the NGHGI. Though, a ‘managed 
land’ proxy is still needed to adjust S3 to be consistent with the NGHGI. Conceptually, this 
comparison can also be linked back to the adjustments done by Grassi et al (2023), 
represented here as NGHGI ~ BM + αS2, where α is the non-intact forest share. Since BM=S3-
S2 (ignoring the LASC), then the NGHGI ~ (S3-S2) + αS2. Grassi et al (2023) provide 
estimates of intact and non-intact forests, allowing α to be estimated, but this adjustment may 
not equally apply to TRENDY S3. A useful corner case is to compare countries where nearly 
all land is defined as managed (e.g., USA, EU27, China), then α=1 and NGHGI ~ S3, without 
the need for a mask. The challenges arise when α<1, when a mask is needed, and whether 
the mask used for S2 is also useable for S3, or whether other approaches are needed.  
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For countries with close to 100% managed forests (e.g., EU27, USA, China), the match 
between NGHGIs and S3 does not depend on applying a managed land mask. Figure 18 
shows a comparison of TRENDY S3 and NGHGI for the EU27. Despite the variability in 
individual models and the median, the match is particularly good. Referencing back to the 
comparison of BM and TRENDY S2 (Figure 16), this may suggest that the BMs are not 
collectively representative of NGHGI or that the TRENDY S2 adjustment does not work for the 
EU27. Although not shown here, a similar result is found for the US, though TRENDY S3 does 
have an overall weaker sink. Perhaps not surprisingly, in China the uptake is too weak in 
TRENDY S3 (Figure 19), which again may confirm that international datasets have not 
incorporated sufficient afforestation or that the Chinese NGHGI is overestimating the uptake. 

 
Figure 18: A comparison of UNFCCC NGHGIs for the EU27 and the TRENDY S3 individual results 
and median. 
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Figure 19: A comparison of UNFCCC NGHGIs for China and the TRENDY S3 individual results 
and median.  

For regions where not all land is managed (α<1), the non-intact forest (managed land) mask 
is needed, as for TRENDY S2. However, it is unclear how this mask will apply for S3. There 
are potentially several issues with using the same mask. For TRENDY S2, the mask covers 
only forest land (20% forest cover), and the mask for 2012 is applied for all years. 
Theoretically, deforestation that occurred before 2012 would be outside the mask (consistent 
with NGHGIs), while deforestation after would be inside the mask after 2012. The challenge 
with a TRENDY S3 simulation, is that land-use change is dynamic, thus the mask needs to be 
dynamic as well. Additionally, the raw TRENDY results may have too coarse grid resolution to 
be able to reasonably separate afforestation, deforestation, and managed land. There is a 
possibility to use the plant function types to help disaggregate within a grid cell, but only a few 
TRENDY simulations provide this data (two for S3 have all the necessary data, while about 
five for S2 and another five with sufficient data to make reasonable estimates). Even if a time 
varying mask was available, it is unlikely that it would be sufficiently accurate, relative to the 
TRENDY model resolution, to be able to detect or capture deforestation or afforestation 
appropriately.  
Within this deliverable we were not able to apply the mask to TRENDY S3 given insufficient 
data provided for the TRENDY S3 simulations. Though, we continue to explore workarounds. 
We envisage two key challenges applying the S3 approach. First, it is necessary to know 
whether the DGVMs can pick up strong deforestation (or afforestation) signals by comparing 
S3-S2 and the BMs. Second, it is necessary to know whether the grid resolution of the DGVMs, 
in addition to the forest mask (static in time) is sufficient to capture the land use dynamics of 
deforestation: Deforestation starts within a forest mask but ends outside the forest mask. 
Further work is required to explore the challenges and opportunities of using TRENDY S3. 

Inversion-based estimates 
Inversions using observation data are a powerful way to independently assess the accuracy 
of NGHGIs, however they do face some challenges. Figure 20 shows six global inversions, 
these inversions essentially represent six configurations of the land uptake that is consistent 
with the observations. A close inspection shows large regional variations, suggesting the 
regional-level inversion results are insufficiently constrained by current observations. In 
addition, the inversions are quite coarse, making it difficult to apply a mask to ‘managed land’ 
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for two reasons: 1) Mapping the mask to grid points, 2) disaggregating each grid point into 
forest (intact and non-intact) and non-forest fluxes.  
Inversions also need to adjust for lateral fluxes (Ciais et al., 2021). The inversion sees what 
the atmosphere sees, which may be different to what NGHGIs estimate. Using cropland as an 
example, carbon is removed from the biosphere at harvest, but respiration occurs where 
people reside. While the crop harvest and respiration process may be carbon neutral, an 
inversion would see a horizontal displacement of the flux (Ciais et al., 2007). In additional ro 
crops, Ciais et al. (2021) included lateral fluxes for forests and rivers. The river export is 
biogenic carbon from inland waters to the ocean, which was atmospheric origin as it was fixed 
by net primary production. There is also a term for outgassing from rivers and lakes. Ciais et 
al. (2022) provides a detailed description of each term, how it is derived and applied. Deng et 
al. (2022) performed a comparison of inversions with NGHGIs, showing the magnitude of the 
forest mask and lateral fluxes. Several other studies have included lateral flux adjustments 
(e.g., Petrescu et al., 2021a; McGrath et al., 2023). These lateral flux adjustments are 
important to compare inversions with NGHGIs, but more analysis is needed on the size of the 
effects and how consistent they are with NGHGIs. 

 
Figure 20: Global inversions from the Global Carbon Budget. 

It is possible to do a direct comparison of inversions and NGHGIs, without masking for 
‘managed land’. There are two justifications for this direct comparison, which will be explored 
throughout this section. First, in some regions, close to 100% of the land is managed (e.g., 
USA, EU27, China), meaning that a managed land mask is not needed. Second, each 
inversion would have the same lateral flux adjustment, given the variability across inversions, 
the lateral flux adjustment is likely much smaller. Nevertheless, we include inversion results 
with and without the lateral flux adjustments as a point of reference on their relative 
importance. 
Figure 21 shows the inversion results and their mean compared to inventory estimates for the 
EU27. The inversions collectively find a much stronger sink in the EU27, compared to all other 
datasets reported in this deliverable. It is unclear if the inversions are correct, or whether the 
inversion is inadequately constrained. The lateral flux adjustment is shown to be large here, 
bringing the inversions closer to the inventory, but with the wrong trend. 
Figure 22 shows the same figure for China, indicating strong agreement between the inversion 
and the NGHGI, with a relatively minor lateral flux adjustment. The agreement between the 
raw inversion and NGHGI may support the hypothesis mentioned earlier that BMs and DGVMs 
are not detecting the recent afforestation in China, or the close agreement could just be 
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coincidental. It is unknown how constrained the inversion results are, requiring more 
information from the inversion modellers. In the USA (not shown), there is close agreement 
between the inversion mean and the NGHGI. 

 
Figure 21: The net land CO2 flux from six inversions (thin lines) and median and NGHGI for the 
EU27, with an estimate of the lateral flux adjustment applied to the median only. 

 
Figure 22: The net land CO2 flux from six inversions (thin lines) and median and NGHGI for 
China, with an estimate of the lateral flux adjustment applied to the median only. 

In both the EU27 and China, the lateral flux adjustments were found to be important. The 
lateral flux adjustments used here are made up of several components. Figure 23 (EU27) and 
Figure 24 (China) show the net lateral flux adjustment, for the various components: 

• Crop sink: The CO2 uptake when crops are grown (spatially located) 
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• Crop source: Respiration when crops are consumed (either via humans or livestock) 
• Forest sink: CO2 removed at forest harvest and put into the HWP (spatially located) 
• Forest source: Decay and burning of HWP, adjusted for trade (import – export) 
• River sink: Flow from rivers out of the country or region 
• River emissions: Outgassing from rivers and lakes 

The figures show the net of each of these terms (sink minus source), and when available, the 
estimate from Deng et al. (2022) is shown. Depending on the region, the lateral flux adjustment 
is dominated by different components. The net river fluxes are close to constant. There is 
globally a net uptake in forest harvest (due to storage in HWPs). Given the magnitude of the 
lateral flux adjustments for some countries, they need careful analysis to make sure they are 
consistent with the way NGHGI fluxes are defined. It is also possible to do lateral flux 
adjustments for bioenergy (liquid and solid), but that is not done here.  

 
Figure 23: Components of the net lateral flux adjustment for the EU27. 
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Figure 24: Components of the net lateral flux adjustment for the EU27, also showing the Deng 
et al (2022) results for comparison. 

Further analysis is needed in regions where only a part of the land is managed. One challenge 
here is where to allocate the deforestation flux. Formally, in the NGHGI, deforestation would 
not occur on forest land but other land such as grassland or cropland (e.g., forest converted 
to grassland, then after 20 years grassland remaining grassland). For the inversions to map 
to the NGHGI, it would be necessary that the mask was sufficiently dynamic to correctly mask 
around deforested land at each time step. This is not possible, as the mask is based on 2012. 
Because of this, we use visual inspection to determine if the forest mask captures 
deforestation, and therefore where the NGHGI deforestation flux should be allocated to allow 
a reasonable comparison. An additional issue is how to disaggregate grid cells when the 
managed land mask splits a grid cell. Here we distribute the flux proportionally to areas, such 
that if 30% of the grid cell is non-forest, then 30% of the flux is non-forest. Other methods 
could be used, such as drawing on the plant function types in the DGVMs, but that is not done.  
Indonesia has a strong deforestation flux, and thus is a good candidate to see whether the 
inversions detect it. Additionally, Indonesia reports 100% of land managed, but the Grassi et 
al (2023) forest mask assumes 80% is managed, so the land masking is less of an issue for 
Indonesia than other regions. Figure 25 disaggregates the Indonesian inversion results and 
NGHGI into intact (unmanaged) forest, non-intact (managed) forest, and non-forest. The net 
CO2 fluxes on land are small for unmanaged forests in Indonesia. We have allocated the 
deforestation flux to non-forest land, therefore the managed land flux terms out to be well 
represented by the inversions. However, irrespective of where it is allocated, the inversions 
do not detect the deforestation flux. We find similar results in Brazil, where the inversions have 
not detected the deforestation flux.  
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Figure 25: The GCP2021 inversion results with the Grassi et al (2023) land mask used to 
disaggregate total land (top) into intact (unmanaged) forests, non-intact (managed forests), and 
other land (bottom). 

Canada has been an outlier country where the inversions suggest a considerably stronger 
sink (Deng et al., 2022). Figure 26 shows the inversions and NGHGI for Canada, 
demonstrating the significantly stronger uptake suggested by inversions. Canada also has 
vast areas that are not managed. A part of the uptake, around one quarter (0.5GtCO2), occurs 
on unmanaged forest land, which is consistent with around one quarter of forest land being 
unmanaged. Virtually no net uptake occurs on non-forest land. This confirms that the vast 
difference between inversions and NGHGI occurs in forests, both managed and unmanaged.  
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Figure 26: The GCP2021 inversion results with the Grassi et al (2023) land mask used to 
disaggregate total land (top) into intact (unmanaged) forests, non-intact (managed forests), and 
other land (bottom). 

The CAMS inversion has been repeated to include lateral carbon fluxes and a managed land 
mask, with one inversion constrained on air samples and another on OCO-2 (satellite). Figure 
27 shows the inversions for Canada. While the OCO-2 inversion maps closely to the Canadian 
NGHGI, the air-sample driven inversion does not. This may indicate that the inversions based 
on the air-sample data are not sufficiently constrained in Canada. The OCO-2 inversion also 
matches well the Indonesian flux in the last five years (not shown). In contrast, the inversions 
do not perform as well in Brazil (Figure 28) or in the USA, Russia, China, or the EU (not 
shown). For Brazil, the OCO-2 driven inversion has a very different trend to the NGHGI, while 
the air-sample driven inversion misses the large deforestation signal in the 2000s. Thus, we 
are in the same position again, not knowing if agreement between inversions and NGHGIs is 
due to chance or a well constrained inversion or NGHGI. Clearly, further analysis on these 
topics is needed. 



CoCO2  
 

D8.3 Third synthesis of CO2 and CH4 observation-based emission estimates 45 

 
Figure 27: The CAMS inversions without (grey) and with (orange / purple) adjustments for lateral 
carbon fluxes and a managed land mask for Canada, for an inversion constrained on Air-
Samples (orange) and OCO-2 (purple). The uncertainty band for one standard deviation is shown 
for the adjusted inversion. 

 
Figure 28: The CAMS inversions without (grey) and with (orange / purple) adjustments for lateral 
carbon fluxes and a managed land mask for Brazil, for an inversion constrained on Air-Samples 
(orange) and OCO-2 (purple). The uncertainty band for one standard deviation is shown for the 
adjusted inversion. 

Summary discussion of net land 
In this revised section on net land CO2 fluxes, the issues in comparing estimates on land were 
highlighted. Without adjusting datasets for consistent system boundaries, one could argue that 
there is little to be gained in comparing different land use data products. A key driver of the 
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results is potentially the land areas covered, which are not routinely provided by different 
datasets. If land areas are available, then back calculation of implied carbon densities and 
their changes over time can be compared to provide additional interpretation of different data 
products. A continued issue is how to interpret agreement or differences in results. If an 
independent approach agrees with the NGHGI, is this by chance or confirmation of consistent 
datasets? A lot of the comparisons have been done using ensembles, but more focus is likely 
needed on individual models and data products, at the country level, to really draw out the 
differences between estimates, and whether we can be confident in agreements or 
differences. Clearly, more work is required in this area. 

5 CH4 emissions 
Methane is the second most important GHG after CO2 but more potent because of its higher 
radiative efficiency. CH4 contributes to ~17% of the total global GHGs emissions using a 
Global Warming Potential (GWP100, CO2-eq), but around 50% of current observed warming 
(IPCC AR6) due to its potent but short-lived nature. Sector wise, the primary sources of 
anthropogenic CH4 emissions are agriculture (enteric fermentation), fossil fuel production, and 
waste management. In this report, we compare and analyse anthropogenic and natural CH4 
emissions for eight global countries, from observation- and inventory-based bottom-up and 
top-down sources and compare them to national inventories reported to UNFCCC, from the 
Common Reporting Format tables (CRFs) for Annex I Parties and from the Biannual Updated 
Reports (BURs) for the non-Annex I Parties. 

 
Figure 29: Total global CH4 anthropogenic emissions from seven inventories, updated from Minx 
et al., 2021. The FAOSTAT independently estimates CH4 from AFOLU, but uses PRIMAP-hist v2.4 
for the remaining sectors. 

Figure 29 presents the total global anthropogenic CH4 emissions from seven inventories. All 
the datasets agree in terms of increasing trends during the last two decades, with differences 
in absolute emissions values. The differences between inventories are mainly caused by 
methodologies of producing or using AD, EFs or technological abatement (Minx et al., 2021). 
For example, the EPA inventory uses the reported emissions by the countries to the UNFCCC 
(often Tier 3) while other inventories produce their own estimates using a consistent approach 
for all countries and country-specific AD and EFs. FAOSTAT and EDGAR mostly apply a Tier-
1 approach to estimate CH4 emissions, while GAINS uses a Tier-2 approach. CEDS is based 
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on pre-existing emissions estimates from FAOSTAT and EDGAR, which are then scaled to 
match country-specific inventories, largely those reported to the UNFCCC (Minx et al., 2021). 
For EU27 the use of AD and EFs and linkages between data sources has been summarized 
in Figure 4 in Petrescu et al., 2020. 

Inventory-based bottom-up estimates 
The anthropogenic CH4 emissions from inventory data covers emissions time series from 1990 
to last available reported year and is presented for the EU and seven other global emitters: 
USA, Brazil, China, Indonesia, India, Russia and DR Congo. The data belongs to UNFCCC 
(2023, CRFs/BURs), EDGAR v7.0, GAINS, FAOSTAT completed by PRIMAP-hist v2.4, and 
the TNO_CoCO2_PED priors emissions datasets for 2018 and 2021. The TNO PED data is 
based on the UNFCCC reported data in 2020 for PED2018 and 2023 for PED 2021 and is 
detailed in the CoCO2 deliverables D2.1 and D2.2 (available at https://www.coco2-project.eu).   

 
Figure 30: Total anthropogenic CH4 emissions from the UNFCCC CRFs and BURs (excl. 
LULUCF) and four bottom-up inventories (EDGARv7.0, GAINS (no IPPU), FAOSTAT (PRIMAP -
hist v2.4 based, except for AFOLU), TNO_CoCO2_PED18-21) presented for the EU and seven 
global emitters. The relative error on the UNFCCC value represents the NGHGI (2023) reported 
uncertainties computed with the error propagation method (95% confidence interval) and gap-
filled to provide respective estimates for each year. China and Indonesia report uncertainties, 
for 2014 and 2000 and 2019 respectively (BUR). Total COD UNFCCC BUR emissions do not 
include IPPU. The EDGARVv7.0 uncertainty is only for 2015 and was calculated according to 
Solazzo et al., 2021 for EDGARv5.0.  

From Figure 24 we note that, except for the EU and USA which show decreasing trends in 
emissions from all datasets, all other countries show increasing trends. 
In the EU, all inventory-based data sources are consistent with each other for capturing recent 
CH4 emission reductions, but they are not independent because they use similar methodology 
with different versions of the same AD (Petrescu et al., 2020, Figure 4). The total 2018 CH4 
emissions in the CoCO2 PED were ~4% higher than reported to UNFCCC in 2023. As CoCO2 
PED was based on the national reporting but in the year 2020, these changes are due to 
changes in the estimations made by the member states. 
In the USA, GAINS reports higher emissions after 2010, largely found in the Energy sector, 
resulting from the EFs used for conventional gas production as well as for unconventional 
shale gas extraction, which has increased rapidly since 2006. Also in Russia, GAINS 

https://www.coco2-project.eu/
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emissions are much higher than NGHGIs and the other two data sets due to the revisions of 
the assumptions on the average composition of the associated gas generated from oil 
production based on information provided in Huang et al. (2015). The higher emissions in 
GAINSv4 might be caused by a greater source from venting of associated gas instead of 
flaring. 
For Brazil, UNFCCC and GAINS report emissions of similar magnitudes and trends. The 
EDGARv7.0 and FAOSTAT report on average around 23 % more emissions for the 1990-
2021 period, but closely follow the NGHGIs trends. The similarity between trends could be 
explained by the use of the same EFs following Tier-1 IPCC 2006 Guidelines and UNFCCC 
NIRs (Janssens-Maenhout et al., 2019), while the higher emissions could appear when using 
different AD information. 
For China the inventory estimates agree with the BUR reported data, with EDGARv7.0 
showing the highest estimates. According to both GAINS and EDGARv7.0, the primary drivers 
for growth in Chinese CH4 emissions are due to a mix of sources, mainly from the IPCC 2006 
sector 1.B.1, fugitive emissions from solid fuels activity linked to increased coal mining. 

In Indonesia the three global datasets agree well up until 2010. From 2010, the inventories 
show a continued increase in emissions, while the UNFCCC BUR emissions suggest a 
decline. EDGARv7.0 reports a large increase in emissions from fugitive emissions from solid 
fuels (coal mining) (IPCC 2006, sector 1.B.1.) at an increased average rate of 19 % per year 
and has increased by a factor of 152 until 2021 compared to 1990. 

For Russia, GAINS emissions are much higher than NGHGIs and the other two data sets due 
to the revisions of the assumptions on the average composition of the associated gas 
generated from oil production based on information provided in Huang et al. (2015). The higher 
emissions in GAINSv4 might be caused by a greater source from venting of associated gas 
instead of flaring. FAOSTAT data for the Russian Federation starts in 1992, since the country 
did not exist before this date. The former USSR statistics were used prior to 1992 without 
adjustments and this is the cause of the 1990 and 1991 outliers in time series. The slightly 
increasing trend observed in EDGARv7.0 and FAOSTAT are set by emissions from the Energy 
sector. 

In DR Congo, UNFCCC BUR data reports a strong increase in emissions, which is due to a 
rapid growth of CH4 emissions from the Waste sector, by a factor of four until 2018 compared 
to 2000. This increase happened at an average yearly rate of +8 %, with an initial sharp 
increase of +30 % between 2000 and 2001, and we believe these needs further investigation. 

In India, all global inventories agree on trends and magnitude but differ considerably from the 
Indian BUR, with EDGARv7.0, GAINS and FAOSTAT reporting 67% (2010), 68 % (2014) and 
65 % (2016) higher than the official Indian estimates. 

Observation-based atmospheric inversions  
Figure 25 presents the total atmospheric inversions CH4 estimates versus UNFCCC official 
reported emissions for the EU and the seven non-EU emitters. The mean column on the right 
of each chart represents the mean of the overlapping time series (2009-last available year, 
except for TROPOMI, which was available only for 2018-2020). For China, the last BUR is 
available for 2014, and therefore we used that value. The inversions show total CH4 emissions, 
including both anthropogenic and natural sources, while UNFCCC includes only total 
anthropogenic emissions. 
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Figure 31: Total anthropogenic CH4 emissions (incl. LULUCF) from UNFCCC NGHGI (2023) CRFs 
(EU, USA and Russia) and BURs (Brazil (4th in 2021), China (2nd in 2019), Indonesia (3rd in 
2021), DR Congo (1st in 2022), India (all three BURs: 2016, 2018 and 2021) and total TD estimates 
as following: for EU regional inversions (FLEXkF_v2023, CIF-FLEXPART and CIF-CHIMERE) and 
global inversions (TM5-4DVAR, CAMSv21r1_NOAA, CAMSv21r1_NOAA_GOSAT, CTE-GCP2021 
and MIROC4-ACTM runs) products. 

In the EU, the averaged 2009-2021 total CH4 emissions from global inversions are in the range 
of 23-26 Tg CH4 yr-1, in line with previous estimates (Petrescu et al., 2023b). As this is the total 
flux, while the UNFCCC NGHGI (2023) report only anthropogenic emissions (15.8 ± 1.8 Tg 
CH4 yr-1), the difference can at least in part be explained by the sum of the natural emissions 
(~7 Tg CH4 yr-1). 

In the USA, trends observed in the TD products are somehow controversial. The discrepancy 
between the trends from CAMS and those from MIROC4-ACTM and CTE-GCP2021 are most 
likely caused by the increasing oil and gas emissions from the Eastern USA (Permian Basin), 
captured by the latter. The same increasing trend is also captured by GAINS (Figure 24). In 
their runs, both MIROC4-ACTM and CTE-GCP2021 use oil and gas priors from GAINS, while 
CAMS uses priors from EDGAR. 

For Brazil, inversions yield an average (range) total CH4 emissions of 55 (42-72) Tg CH4 yr-1, 
with TM5-4DVAR reporting the highest estimate. The two CAMS inversions report an 
increased trend during 2017-2021, with 15 Tg CH4 higher emissions in 2021 than in 2017. 
There is also a peak in the TROPOMI observation in 2019, and the TM5-4DVAR model 
attributed this to biomass burning events, identified in the reported partitions. 

In China, the TD estimates mostly agree, except for CAMS inversions which find 10 to 20 Tg 
CH4 yr-1 higher emission than the other inversions. Both MIROC4-ACTM runs (control and OH 
inter-annual variability (IAV) varying run; Patra et al., 2021) are in line with the BURs. Trend 
wise, all inversions agree on increased emissions after 2019. 

For Indonesia, most TD results agree on the trend and show a slight increase in emissions. 
Similar trend is also seen by the BURs. However, the CAMS inversions result in about 10 Tg 
CH4 yr-1 lower emissions than the other inversions (MIROC4-ACTM and CTE-GCP2021). 

In Russia, the slight decreasing trend observed in the NGHGIs is not seen by inversions, and 
MIROC4-ACTM and CTE-GCP2021 results are about 10 Tg CH4 yr-1 higher than CAMS. 
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In DR Congo, inversions do not show any trend. The two high values in 2018 and 2020 seen 
by the TROPOMI satellite are triggered by high emissions from wetlands reported in the TM5-
4DVAR partitions. 

For India, the TD estimates of total emissions agree well on increased trends and magnitudes. 
In contrast, UNFCCC reporting does not show a trend, but too little reported data from BURs 
is available, therefore a plausible conclusion cannot be drawn. 

Uncertainties from inverse systems 
This section is kept as previously written for D8.2. The main reason was to stress again the 
importance observation networks have in inversion systems, and how a denser coverage can 
help lowering uncertainties. 
CTE-CH4 inversion system referenced by Tsuruta et al. (2017) provided prior and posterior 
fluxes and uncertainties (standard deviation) from surface inversions for 2005-2018 (those 
used by Thompson et al. (2022)). There are two sets of inversions: “VERIFY_inclusive" (or S4 
run in VERIFY) which uses as many available stations as possible, and “VERIFY_core" (or S5 
run in VERIFY) which only uses stations covering a sufficiently long period. The degrees of 
freedom in the state vector of the system was low, and therefore, the uncertainty estimates 
may not differ much between the two. Below we present three examples of uncertainty 
reduction maps, produced with data from the CTE system and which exemplifies how 
important the increase in the number of observation stations (2006-2018) is in reducing 
uncertainties in flux estimates. 

  

Figure 32: VERIFY_inclusive (S4) inversion run, uncertainty reduction maps computed as (1 − 
Δpost/Δprior) for 2006 and 2018 with different sets of observation stations. 
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Figure 33: VERIFY_core (S5) inversion run, uncertainty reduction maps computed as (1 − 
Δpost/Δprior) for 2006 and 2018 with different sets of observation stations. 

From the two VERIFY results, the S4 run with all stations (Figure 24) shows higher uncertainty 
reductions in 2018 compared to 2006 because of more measurements available. Most 
reductions are observed in Central Europe (the Netherlands, Germany and Switzerland). For 
S5 with core stations (Figure 25) the reductions are smaller, and observed in E Poland, N Italy 
and Spain.  
The differences between the two years shown in the uncertainty maps are mostly due to the 
assimilated observation network sites. Some sites show weaker or stronger effects on the 
reduction of uncertainty. For those showing less effect, the main reasons are i) uncertainty 
assigned to the observations (i.e. how much weight/trust we put on it), ii) differences between 
prior/observations are large (i.e. 'wrong' magnitude or distribution of prior emissions, or bad 
transport modeling), and iii) prior emissions around the sites are simply very small, and 
therefore the inversion does not change fluxes much (i.e. prior flux uncertainty is small). For 
the sites that have a higher effect on uncertainty reduction, these reasons are important to be 
included in the inversion. 
CTE-CH4 also provided us with GOSAT assimilated fluxes, for 2010-2017. In Figure 34 we 
present the uncertainty reduction maps between 2010 and 2017. Because the covariance 
structure is not the same as the latest surface inversion and Europe is optimized on 1x1 grid, 
but with long spatial correlation (100 km vs 500 km), it is not possible to examine the effect of 
the satellite information by comparing to the CTE-CH4 surface inversions presented here. 
However, it is interesting to note how satellite data assimilation infers changes on a regional 
scale. Unlike surface stations, satellite data have more power to constrain northern emissions 
than central Europe. 

 
Figure 34: CTE-CH4 GOSAT inversion run, uncertainty reduction maps computed as (1 − 
Δpost/Δprior) for 2010 and 2017. 

Because the covariance structure is not the same as the latest surface inversion and Europe 
is optimized on 1x1 grid, but with long spatial correlation (100 km vs 500 km), it is almost 
impossible to examine the effect of the satellite information by comparing to the CTE-CH4 
surface inversions presented here. However, it is interesting to note how satellite data 
assimilation infers changes on a regional scale. Unlike surface stations, satellite data have 
more power to constrain northern emissions than central Europe. 

Reconciliation and recommendations 
Petrescu et al. (2023a) explained how a straightforward, direct comparison of the fluxes 
between different inversion systems is not possible because of the different ways each 
inversion allocates and groups the natural and anthropogenic fluxes. Next to this, a robust 
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estimate of natural fluxes is still needed, to better explain the gap between anthropogenic 
inventories and total emissions seen by inversions. To summarize our work, Figure 29 shows 
the total CH4 fluxes for the EU and the seven global emitters, separating BU anthropogenic 
sources disaggregated per sectors, BU natural emissions, TD natural emissions from regional 
and global inversions, and total emissions from global TD estimates. 

 
Figure 35: Total anthropogenic and natural CH4 emissions from BU and TD estimates 
presented as average of 2015-last available year for EU and seven global emitters. The BU 
anthropogenic estimates belong to: UNFCCC NGHGI (2023) CRFs and BURs (incl. LULUCF) as 
totals and sectoral shares, EDGARv7.0, GAINS and FAOSTAT (with PRIMAP). The BU Natural 
emissions for the EU are the sum of the VERIFY products (biomass burning, inland waters, 
geological and peatlands plus mineral soils (Petrescu et al., 2021b; Petrescu et al., 2023b). For 
the seven non-EU emitters, the BU Natural fluxes are the sum of wetland emissions (LPJ-
GUESS), lakes and reservoirs fluxes (ORNL DAAC, Johnson et al., 2022), geological (updated 
activity in SI) and biomass burning emissions (GFED4.1s) (Table 3). The natural emissions 
have been plotted starting at the mean of the BU anthropogenic estimates, to retain 
comparability across the natural emission estimates, but also compare with the total TD 
estimates. The total regional TD estimates (for EU) belong to the mean and min/max of 
FELXkF_v2023, CIF-FLEXPART and CIF-CHIMERE and for USA GEOS-Chem CTM (TROPOMI) 
for the year 2019 (Nesser et al., 2023). The total global TD inversions represent the average of 
the 2015-last available year of the mean and min/max of CTE-GCP2021, MIROC4-ACTM both 
runs, CAMS v21r both runs and TM5-4DVAR. 

Petrescu et al. (2023a) discuss the identified issues of reconciliation. Here are the final 
reccomendations which may help improve future comparisons between approaches: 

1. Generate spatially distributed data of NGHGIs by the respective inventory agencies. 
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2. A better quantification of uncontrolled spontaneous events of point source estimates 

to complement NGHGIs (Maasakkers et al., 2016 and 2022 for the EPA in the USA). 

3. Denser atmospheric observation networks to feed into inversions and reduce 

uncertainties at grid-cell levels. 

4. Routine provision to quantify uncertainties from inversion models. 

5. Develop methods to compare estimates and ensembles with inventory estimates. 

6. Increase quality in systematic measurements of fluxes to produce better priors with 

better uncertainties. 

7. More accurate transport models to increase robustness in emission estimates. 

8. Clear prescribed inventory methods to estimate and assess uncertainties, particularly 

statistical significance. 

9. Accurate model outputs (EFs) to be used in direct comparisons with inventory data. 

10. Accurate estimates of natural emissions with better spatial distribution, to subtract from 

total inversion estimates and compare with anthropogenic NGHGIs. 

11. Develop a common language, terminology and data formats to compare inversions 

with NGHGI formats. 

6 Data availability 
If you are interested in figures from different countries or regions, please contact the authors.  

7 Conclusion 
This deliverable presents comparisons of inventory- and observation-based approaches, 
building on earlier work in VERIFY and applied here to the largest emitters or countries that 
can be used to draw out interesting lessons. We highlight the differences and discrepancies 
between UNFCCC NGHGI, independent inventories, process-based models, and atmospheric 
inversion estimates. The analysis focused on the fossil CO2 emissions, net land CO2 fluxes, 
and natural and anthropogenic CH4 emissions.  
For fossil CO2 emissions, the analysis highlighted the differences between datasets and the 
importance of harmonising datasets for meaningful comparisons. We had limited data on CO2 
inversions but showed and discussed inversion results for Europe. The results show a general 
consistency between inventories and NO2 based inversions, but without additional analysis of 
prior and posterior uncertainties it is not possible to assess the consistency quantitively.  
For net land CO2 fluxes, a variety of datasets are available to provide country-level estimates: 
bookkeeping models, process-based models, inversions-based estimates, in addition to the 
NGHGIs. Comparisons were made with inventories in three groups: 1) bookkeeping models, 
2) process-based models, 3) inversions. In each case, the issues of system boundaries were 
discussed. Under some conditions, where key assumptions in different datasets match, it is 
possible to make meaningful comparisons between datasets. However, in most cases, key 
assumptions do not align (such as managed land areas, direct versus indirect effects), and 
this inhibits meaningful comparisons in many cases. Without additional data and analysis, it is 
not possible to explain differences between alternative datasets. While datasets overlap in 
some countries, they do not in others, and it is unclear if agreement is coincidence or 
meaningful consistency between datasets. An active area of research is understanding the 
differences between datasets, to provide sufficient confidence to disseminate more broadly.  
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For CH4 emissions, we make comparisons with a variety of inventory-based estimates and 
inversions. Anthropogenic emissions have declined in the USA and EU (regulations) and 
Russia (dissolution of the Soviet Union). For the inventories, divergences between data sets 
can generally be attributed to different methodology and tiers used by each of the investigated 
inventories, when data is available to make comparisons (such as activity data and emission 
factors). For the inversions, the general magnitudes and trends agree, but uncertainties are 
too large to be more specific. We investigated the priors used by different inversion systems 
as well as the allocation of emissions (disaggregated partitions) to specific sectors. The use 
of a variety of priors across different inversion systems inhibit comparability. The robust 
quantification of natural CH4 emissions will also play an important role in future reconciliation 
procedures. Uncertainty reduction maps can be used to identify the importance of specific 
observations, with the location or the period of observations. There is still a very scarce 
observation network available in Africa, South America, and Asia. For a more robust analysis, 
more detail is needed on prior and posterior uncertainties, to help identify statistically 
significant differences between datasets.  
With anticipated improvements in atmospheric modeling and observations, as well as 
modeling of natural fluxes, future development needs to resolve key knowledge gaps and 
better quantify uncertainty. Observation- and model-based methods may emerge as a 
powerful tool for verifying and complementing emission inventories, but more effort is needed 
on ensuring consistency between datasets. Quite often insufficient data inhibits the ability to 
compare datasets. Data providers should aim to (i) make the system boundary very clear, and 
(ii) provide sufficient disaggregation of input and output data to facilitate comparisons. There 
is also a reliance on using model ensembles, instead of analyzing individual model results. 
Ultimately, comparisons at the country level between individual models and data products may 
be the only way to sufficiently understand differences and improve the comparability of 
estimates.  
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