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1 Introduction 

The European Commission is establishing an operational observation-based anthropogenic 
CO2 emissions monitoring and verification support capacity (CO2MVS) as part of its Copernicus 
Earth Observation programme. Demonstrator systems for this CO2MVS are being developed in 
the Prototype System for a Copernicus CO2 service (CoCO2) project.  

In its information to the 1st Global Stocktake entitled Data contribution of the European CoCO2 
project to the first Global StockTake (Deliverable D6.5), CoCO2 introduced data from five 
demonstrator systems, each exploring and prefiguring different aspects of the future CO2MVS. 
The first three are specifically about fossil fuel emissions: 

- local large fossil fuel CO2 emissions estimated from observed CO2 plume cross-sections 

- regional fossil fuel CO2 emissions estimated by an atmospheric inversion assimilating 
satellite retrievals of co-emitted species 

- global fossil fuel CO2 emissions estimated by a Carbon Cycle Fossil Fuel Data 
Assimilation System 

The fourth demonstrator data is about the Agriculture, Forestry and Other Land Use sector 
(AFOLU)  

- global AFOLU emissions estimated by CO2 atmospheric inversions 

The fifth demonstrator addresses all global emissions and absorptions synergistically: 

- global data from an extension of the ECMWF Numerical Weather Prediction system 

The present Functional Requirements Specification Document describes the codes that have 
been used to generate Figures 2-7 of D6.5. It explains what these codes do and how they do it. 
It explains how the user requirements identified by CoCO21 have been addressed from a 
technical point of view by each demonstrator. The references for each demonstrator are given 
directly at the end of the section where it is described.  

2 Estimates of large point source fossil fuel CO2 emissions 
based on satellite observations 

2.1 Introduction 

The algorithm follows the method successively developed by Zheng et al (2020) and Chevallier 
et al (2020, 2022). It is a fully automated process without any manual selection, giving it the 
advantage of being objective and making it fit for an operational application. Its implementation 
to generate Figure 2 of the CoCO2 submission to the GST is described in the following, as an 
update of the text of Chevallier et al (2022). Computations were performed on the High 
Performance Computing resources of https://www-hpc.cea.fr/ under the allocation 
A0110102201 made by Grand Equipement National de CalculIntensif (GENCI). 

2.2 CO2column retrievals 

The name Orbiting Carbon Observatory-2 (OCO-2) designates both a specific spacecraft in sun-
synchronous polar orbit and the single sounding instrument it carries. This instrument 

 
1https://www.coco2-project.eu/sites/default/files/2022-03/CoCO2-D6-3-V1-0.pdf 

https://www-hpc.cea.fr/
https://www.coco2-project.eu/sites/default/files/2022-03/CoCO2-D6-3-V1-0.pdf
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incorporates three boresighted spectrometers. “OCO-3” designates a similar instrument to that 
of OCO-2, but is installed as an external payload on the International Space Station (ISS). 
OCO-3 is therefore not autonomous, and follows viewing and operation constraints from the 
ISS. This disadvantage is offset by a new pointing mirror assembly which allows for much more 
agile vision than OCO-2. The ISS has a 12% faster ground-track velocity than OCO-2 (7.667 km 
s-1 vs. 6.75 km s-1; see Eldering et al., 2019, and Baker et al., 2022), resulting in slightly less 
spatially dense retrievals, except when a specific scanning mode is enabled to perform side-by-
side scans and provide snapshot area maps (SAMs) of ∼80 × 80 km2. The soundings of the two 
OCOs are therefore distributed differently in space and time, but their footprint and precision are 

similar (∼3 km2 and better than 1 ppm, respectively). 

For the two OCO instruments, we use all operational quality-controlled bias-corrected retrievals 
of the column-average CO2 dry air-mole fraction (XCO2) with associated uncertainty estimate 
over both land and ocean made by the Atmospheric CO2 Observations from Space (ACOS) 
algorithm of NASA (O’Dell et al., 2018). For OCO-2, a distinction is made between the 
emissions estimated from version 10 of NASA’s official column-retrieval algorithm and version 
11. Version 10 covers the full OCO-2 record from September 2014 until February 2022, while 
version 11 has taken over since then, but with only a portion of the past OCO-2 record having 
been reanalysed by NASA so far. Version 11 generates more data than version 10, and with 
enhanced quality, so that the two data streams are not fully comparable. For OCO-3, version 10 
is the latest processing to date and covers the period from August 2019 until October 2022. The 
OCO-2 and OCO-3 retrievals were produced by the OCO-2 and OCO-3 project at the Jet 
Propulsion Laboratory, California Institute of Technology. 

We neglect the impact of the deviation of the column averaging kernel from an ideal vector of 
ones. When computing the XCO2 line densities, our emission retrieval also uses the a priori 
surface pressure and the a posteriori total column water vapour of the ACOS data. 

2.3 Estimating the CO2 emissions from the burning of fossil fuels 

We process data from both instruments in exactly the same way. 

Each OCO orbit is analysed with a 200 km moving window successively centred on each of the 
validated retrieval. The width of the moving window defines the maximum size of enhancements 
allowed. If a retrieval value stands out of the variability of the retrievals in the window, the 
procedure attempts to fit a function that represents a bell curve on top of a linear background, 
on the soundings located over the dominant surface type in the window. For the SAM 
observation mode of OCO-3, we exclude from the fit the retrievals that are not in the same scan 
line, in order to stay within a cross-sectional vision. The soundings are represented by their 
XCO2 retrievals and by their position along the satellite track: their across-track position is 
ignored, the satellite narrow swath being used only to damp retrieval noise. The restriction to 
the soundings of the dominant surface type (land or water) mainly skips the artificial 
discontinuities in the retrievals linked to the corresponding changes in the surface albedo. The 
adjustable parameters are the standard deviation and the height of the Gaussian, and the slope 
and offset of the line. The centre of the peak is positioned in the middle of the 200 km moving 
window and is not adjusted. The choice of the Gaussian form is linked to its neutrality (in the 
sense of the principle of maximum entropy) rather than to a hypothesis on the exact shape of 
the plume. In particular, a visual inspection of the orbits reveals that many XCO2 enhancements 
take the form of Gaussian mixtures that can still be well adjusted by a single Gaussian: these 
ones are retained by the automatic process. 

The quality of the fit is evaluated by the following criterions: (a) its coefficient of determination r2 
(it has to be larger than 0.72), (b) the density of the retrievals within 1σ of the Gaussian centre, 
and between 2σ and 3σ of it (in both cases it has to be at least of 1 sounding per km on 
average on each side of the peak), (c) the value of the Gaussian standard deviation (it must be 
between 2 and 200/6 km, except for the 80 × 80 km2 SAM observation mode of OCO-3, for 
which the maximum acceptable σ is reduced to 20 km), (d) the value of the Gaussian height 
relative to the retrieval variability in the window (the former has to be larger than the latter). A 



 

 8 

validated fit is interpreted as reflecting the potential crossing of a CO2 plume from an emitting 
area or point source. If several validated fitting functions, centred on different retrievals, overlap, 
only the one with the largest r2 is kept. Such an overlap can happen for instance between 
estimates made from different scan lines of a SAM. 

By definition, the area under the Gaussian is the XCO2 line density (in ppm m-1, then converted 
to kg m-1), which reflects the distribution of CO2 abundance in the CO2 plume. We multiply it with 
the wind speed in the direction normal to the OCO track to retrieve the corresponding emission 
under the assumption of a steady wind. The wind speed is taken from the fifth generation of 
ECMWF atmospheric reanalyses of the global climate (ERA5, Hersbach et al., 2020) in the 
model ninth level from the surface, that corresponds to a geometric altitude of about 250 m 
(after Brunner et al., 2019). The few cases with retrieved emissions less than 1 ktCO2 h-1 or 
larger than 100 ktCO2 h-1 are judged as unreliable and are left out.  

This set of emission retrievals is then filtered to keep only the fresh plumes, defined here as 
plumes which are mostly less than 1.5-hour old, because older ones have a more complex 
transport history. Only OCO-observed plume transects that are either downwind of, or less than 
30 km from, coal or steel plants whose cumulative emissions are larger than 1.0 ktCO2 h-1 are 
kept. The location of the coal-fired power plants or steel plants is taken from the detailed time 
series reported and regularly updated by https://globalenergymonitor.org/. The versions of July 
and March 2022, for coal and steel, respectively, are used. For coal, this data includes an 
estimate of the annual CO2 emissions for each plant that we correct for the capacity factor: 
indeed we assume that when an OCO sees a coal-fired power plant plume, this plant operates 
at the maximum of its capacity. For steel plants, we assume an actual production of 75% of the 
plant nominal capacity and a conversion factor or 1.85 tons of CO2 per ton of steel produced. 
Figure 1 shows a simple case where an XCO2 enhancement is clearly visible in the OCO-2 
data downwind of a coal-fired power plant, using the ERA5 wind estimate. 

 

Figure 1 – plume identified on a portion of an OCO-2 orbit over South Africa centred on sounding 
2014110711502571 (v10 retrievals, plotted over an OpenStreetmap background). The cross marks the 
Matimba coal power plant and the arrow shows the wind direction. 

Note that we do not attempt to optimise the wind direction given the uncertainty in the origin of 
the plume, in particular when there are multiple emitters. Other sources of information would be 
needed to do it properly. 

https://globalenergymonitor.org/
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2.4 Definition of the footprint of the emission retrievals 

The uncertainty in the wind field and the lack of information on the vertical distribution of the 
plume leaves a large margin for attribution of the plume to specific emitters, beyond the nearby 
ones that allow selecting the emission retrievals, as explained in Section 2.3. We define the 
plume footprint ad hoc as follows. First, we only consider coal-fired plants and steel plants from 
https://globalenergymonitor.org/ whose emission plumes could reach the orbit within less than 7 
hr in a straight line, given the wind at the peak (as defined in Section 2.2). Older plumes are 
assumed to be too diffused to contribute to the observed enhancement (Broquet et al., 2018). 
Second, we exclude the plants whose emission would pass through the orbit in a straight line 
(given the wind at the peak) more than 5σ from the Gaussian centre. The loose 5σ criterion 
accounts for the uncertainty in the wind direction. For the same reason, we reintegrate 
emissions from the plants that are “downwind” of the orbit but less than 30 km from it. We keep 
the list of these plants together with the emission retrievals for evaluation, when we compare the 
latter with the cumulative emission of the former. 
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Zheng, B., Chevallier, F., Ciais, P., Broquet, G., Wang, Y., Lian, J., & Zhao, Y. (2020). 
Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting 
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3 Estimates of fossil fuel emissions from regional 
inversions using co-emitted species 

3.1 Overview 

The sequence of computations implemented by Fortems-Cheiney and Broquet (2022) that is 
used for the estimate of the national-scale fossil fuel CO2 (FFCO2) emissions in Europe and for 
the generation of Figures 3 and 4 of the CoCO2 submission to the GST consists in: 

1) The atmospheric inversions of maps of the NOx or CO emissions over Europe during 2005-
2021 at 1-day and 0.5° resolution. These inversions are based on the coupling between the 
variational mode of the Community Inversion Framework (CIF, Berchet et al., 2021), the 
CHIMERE regional atmospheric chemistry transport model (Menut et al., 2013, Mailler et al., 
2017) and the adjoint code of this model (Fortems-Cheiney et al., 2021). The NOx and CO 
inversions assimilate respectively atmospheric NO2 and CO products from spaceborne 
instruments and apply corrections to the maps of anthropogenic emissions from an inventory of 
the European NOx, CO and CO2 emissions by the TNO organisation (Kuenen et al., 2014; 
Super et al., 2020) and to the maps of biogenic emissions of NOx from the MEGAN model 
(Guenther et al., 2006), 

2) The conversion of the daily maps of NOx or CO anthropogenic emissions from these 
inversions into estimates of the fossil fuel CO2 emissions at a national and monthly scale for five 
large groups of sectors of emitting activities. This conversion relies on the sectoral maps of 
emissions from the three species and, implicitly, on the emission ratios between the species for 
each sector, country and month from the inventory by TNO. 

The following subsections detail the different components of this general scheme.  

 

3.2 Satellite observations 

3.2.1 OMI-QA4ECV-v1.1 NO2 

The Ozone Monitoring Instrument (OMI) is a ultraviolet-visible (UV-Vis) instrument launched in 
July 2004 onboard the Earth Observation System (EOS) Aura satellite, which flies on a 705 km 
sun-synchronous orbit that crosses the Equator at 13:40 LT.  OMI provides measurements for 
the derivation of NO2 Tropospheric Vertical Column Density (TVCD) observations. Compared 
with other UV-Vis instruments providing a long archive of NO2 observations, it has the highest 
spatial resolution and least degradation (Schenkeveld et al., 2017; Levelt et al., 2018), allowing 
the study of long-term variations for various regions of the world. We use the OMI-QA4ECV-
v1.1 NO2 TVCD level-2 product (Boersma et al., 2017). The data selection follows the criteria of 
the data quality statement from Boersma et al. (2017): the processing error flag equals 0 for a 
pixel 

- the solar zenith angle is lower than 80°, 
- the snow ice flag is lower than 10 or equal to 255, 
- the ratio of tropospheric air mass factor (AMF) over geometric AMF is higher than 0.2 to avoid 
situations in which the retrieval is based on very low (relative) tropospheric air mass factors, 
- the cloud fraction is lower than 0.5. 
 

https://doi.org/10.5194/acp-20-8501-2020


 

 11 

3.2.2 TROPOMI-PAL NO2 

The Tropospheric Monitoring Instrument (TROPOMI, Veefkind et al., 2012) was launched 
onboard the Copernicus Sentinel-5 Precursor (S5P) satellite in October 2017. It flies on a 824 
km altitude sun-synchronous orbit that crosses the Equator at 13:30 LT. This imaging 
spectrometer covers a UV-Vis band supporting the derivation of NO2 TVCD observations. We 
use the Product Algorithm Laboratory (PAL) version 2.3 NO2 TVCD level-2 product (Eskes et 
al., 2021). 

Our TROPOMI data selection follows the criteria of VanGeffen et al (2018). We only select 
observations with a quality assurance (qa) value higher than 0.75 and a cloud radiance fraction 
lower than 0.5. As for OMI, we only select observations when the error associated with the 
retrieval is lower than 100%.  

3.2.3 MOPITT CO 

We use CO observations from the MOPITT instrument (Deeter et al., 2019). The MOPITT 
Infrared (IR) spectrometer has been flown onboard the NASA EOS-Terra satellite, on a low sun-
synchronous orbit that crosses the Equator at 10:30 and 22:30 LST since 1999. The spatial 
resolution of its measurements is about 22 ×22 km2 at nadir. It has been operated nearly 
continuously since March 2000. MOPITT CO products are available in three variants: thermal-
infrared (TIR) only, near-infrared (NIR) only and the multispectral TIR-NIR product, all 
containing total columns and retrieved profiles (expressed on a 10-level grid from the surface to 
100 hPa). We choose to use the MOPITT “surface” multispectral MOPITTv8-NIR-TIR product 
(also called MOPITT-v8J), as it provides the highest number of observations, with a good 
evaluation against in situ data from NOAA stations (Deeter et al., 2019).  

3.3 Configuration of CHIMERE for the simulation of NO2 and CO 
concentrations in Europe 

CHIMERE is widely used to model air quality at regional scale (Cholakian et al., 2019; Ciarelli et 
al., 2019, Menut et al., 2020). It is one of the seven state-of-the-art chemistry transport models 
(CTMs) behind the operational ensemble simulations of the Copernicus Atmosphere Monitoring 
Service (CAMS) regional services.  

Here, CHIMERE and its adjoint code are driven by the CIF to simulate NO2 and CO 
atmospheric concentrations over Europe and their sensitivity to the surface emissions.  It is run 
over a 0.5°x0.5° regular horizontal grid with 17 vertical layers, from the surface to 200 hPa, with 
8 layers within the first two kilometers. The domain covers Europe (15.25°W-35.75°E; 31.75°N-
74.25°N, see Figure 2) and therefore includes 101 (longitude) x 85 (latitude) x 17 (vertical 
levels) grid-cells. 
 
The chemical scheme used in CHIMERE is MELCHIOR-2, with more than 100 reactions, 
including 24 for inorganic chemistry. CHIMERE is driven by the European Centre for Medium-
Range Weather Forecasts (ECMWF) operational meteorological forecasts. The emissions maps 
and boundary conditions used for the simulations are discussed in the next sections.  
 
Due to the need for a compromise between the robustness of the simulation of the chemistry in 
the model and the computational cost with a complex chemical scheme, the aerosols modules 
of CHIMERE have not been included in its adjoint code yet and are therefore not activated in 
the CHIMERE forward simulations.  
 

3.4 Comparison between the satellite observations and CHIMERE 

As the spatial resolution of the satellite data is finer than that of the CHIMERE grid, the selected 
OMI and TROPOMI NO2 TVCDs, and MOPITT surface concentrations are aggregated into a 
single observation in each model grid-cell, called “super-observation”. In order to associate the 
super-observations to a real averaging kernel, these super-observations are defined as the 
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observations (with their averaging kernel) corresponding to the median of the concentrations 
within the 0.5°×0.5° model grid-cell and within the CHIMERE physical time step of about 5-10 
minutes.  

The CHIMERE simulation of the NO2 TVCDs and CO concentrations corresponding to these 
super-observations are derived from the NO2 and CO simulated 3D-fields by applying vertical 
integrations with the averaging kernels associated to the super-observations (Figure 2).  

 

Figure 2 – Domain for the CHIMERE simulations and for the inversions with the averages of the CO 
concentrations a) simulated by CHIMERE using the prior TNO-GHGco-v3 anthropogenic emission estimate 
where and when MOPITT-v8J “surface” super observations are available, and b) observed by MOPITT-v8J, in 
ppbv, at the 0.5°x0.5° CHIMERE grid-cell resolution, in February 2015. 

3.5 Prior estimate of the emissions, and of the boundary conditions 

The Bayesian framework of the atmospheric inversion underlies the use of a prior estimate of 
the NOx and CO emissions, which is updated by the NOx and CO emission inversions to better 
fit the observations. This prior estimate also feeds the initial simulation with CHIMERE in the 
iterative process of the variational inversions. The inversion system controls the initial and 
lateral and top boundary conditions for the concentrations in the model together with the surface 
emissions, and, as for the latter, it requires a prior estimate of these boundary conditions. 
Actually, here, the update of these prior estimates for the emissions and boundary conditions by 
the inversions consists in rescaling these prior estimates rather than in incremental corrections. 
Therefore, strictly speaking, the emission products detailed below belong to the observation 
operator of the inversions. Finally, the simulations of the atmospheric chemistry require 
estimates of the regional emissions of VOCs, which are not modified by the inversion. 

The prior anthropogenic NOx and CO emission estimates are taken from the TNO-GHGco-v3 
gridded inventory. TNO-GHGco-v3 is an update of the TNO inventory described in Kuenen et 
al., (2014) and in Super et al., (2020). The dataset is based on the last European Monitoring 
and Evaluation Programme/Centre on Emission Inventories Projection (EMEP/CEIP) and 
UNFCCC official country reporting for air pollutants and greenhouse gases respectively. The 
emissions for the year 2019 have been extrapolated with an in-sample approach, and, here, the 
emissions for 2020 and 2021 are fixed to the values for 2019. In TNO-GHGco-v3 the NOx, CO 
and FFCO2 emissions are mapped at a 6x6 km2 horizontal resolution. Annual and national 
budgets are disaggregated in space based on proxies of the different sectors (Kuenen et al., 
2014). The temporal disaggregation is based on temporal profiles provided per GNFR sector 
code with typical month to month, weekday to week-end and diurnal variations. Following the 
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GENEMIS recommendations (Kurtenbach et al., 2001; Aumont et al., 2003), we speciated the 
TNO-GHGco-v3 NOx emissions as 90% of NO, 9.2% of NO2, and 0.8% of nitrous acid (HONO) 
emissions. We have aggregated the TNO-GHGco-v3 maps at the 0.5°x0.5° horizontal resolution 
of the CHIMERE grid. 
 
The prior biogenic NOx emissions are derived from the MEGAN model (Guenther et al., 2006). 
CO biogenic emissions are assumed to be negligible and are not taken into account. The fixed 
anthropogenic emissions for VOCs are obtained from the EMEP inventory (EMEP/CEIP 
website). The fixed VOCs biogenic emission estimates come from the MEGAN model (Guenther 
et al., 2006). 
 
Climatological values from the LMDZ-INCA global model (Szopa et al., 2008, Folberth et al., 
2006) are used to prescribe concentrations at the lateral and top boundaries and the initial 
atmospheric composition in the domain of CHIMERE (Menut et al., 2013). The fields of the 
global model have a horizontal resolution of 3.8° in longitude and 2.5° in latitude. They  are 
interpolated along the boundaries of our CHIMERE domain.  
 

3.6 Variational inversion of the NOx and CO emissions 

The inversions of the NOx or CO emissions follow a Bayesian theoretical framework. They 
consist in correcting the prior estimate of these emissions and of the model initial and boundary 
conditions to improve the fit between CHIMERE and the satellite NO2 or CO data, respectively. 
Fortems-Cheiney et al. (2021) provides details on the principle and configuration for these 
variational inversions. The optimal (posterior) estimate of the emissions in a statistical sense is 
found by iteratively minimising the following cost function J(x): 

J(x)=(x-xb)TB-1(x-xb)+(H(x)-y)TR-1(H(x)-y) 

Where: 

• xis the control vector and xb is its prior value, which are detailed in the following; 

• the observation vector y gathers the super-observations from the OMI, TROPOMI or 
MOPITT datasets presented in sections 3.2 and 3.4; 

• the observation operator H projecting the control vector to simulations of concentrations 
corresponding to these super-observation combines the emission and boundary 
conditions presented in section 3.5, the CHIMERE model presented in section 3.3 and 
the sampling and vertical interpolation corresponding to the observations as explained 
in section 3.4; 

• the prior and observation error covariance matrices B and R characterise the 
uncertainties in xb and in y and H respectively, under the assumption that these 
uncertainties are unbiased and follow a normal distribution. 

 
Series of inversions over successive 1-day windows are conducted for NOx and then combined 
to provide an estimate of the NOx emissions over the whole period of analysis. The control 
vector x in the NOx inversions contains scaling factors to be optimised by the NOx inversion: 
 

● factors scaling the NO and NO2 anthropogenic emissions at a 1-day temporal resolution, 
at a 0.5° × 0.5° (longitude, latitude) horizontal resolution and over the first 8 vertical 
levels of CHIMERE i.e. for each of the corresponding 101×85×8 grid cells, 

● factors scaling the NO biogenic emissions at a 1-day temporal resolution, at a 0.5° × 
0.5° (longitude, latitude) resolution and at the surface (over 1 vertical level only), i.e. for 
each of the corresponding 101×85×1 grid cells, 

● factors scaling the daily NO and NO2 3D initial conditions at 0:00 UTC, at a 0.5° × 0.5° 
(longitude, latitude) resolution and over the 17 vertical levels of CHIMERE. 
 

For CO, series of inversions over successive 1-month windows are conducted. The control 
vector x for the CO inversions is similar to that for the NOx inversions. However, due to the 
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relatively long lifetime of CO, we have to account for the uncertainties in the CO lateral 
boundary conditions at the borders of the CHIMERE domain. Furthermore, the chemical 
production of CO by VOCs is fixed and not controlled here by the inversion. Therefore, the 
control vector for the CO inversions contains the following scaling factors: 
 

● factors scaling the CO anthropogenic emissions at a 1-day temporal resolution, at a 0.5° 
×0.5° (longitude, latitude) horizontal resolution and over the first 8 vertical levels of 
CHIMERE, i.e. for each of the corresponding (30 or 31 days) x 101 × 85 × 8 grid cells, 

● factors scaling the CO lateral boundary conditions at 1-day temporal resolution, at a 0.5° 
× 0.5° (longitude, latitude) horizontal resolution, i.e. for each of the corresponding (30 or 
31 days) × 372 grid cells, over the 17 vertical levels of CHIMERE, 

● factors scaling the CO 3D initial conditions at 0:00 UTC the first day of the month, at a 
0.5° × 0.5° (longitude, latitude) horizontal resolution and over the 17 vertical levels of 
CHIMERE. 
 

The prior estimate xb of the control vectors for the inversions consist in sets of unitary scaling 
factors, which implicitly fixes the prior knowledge of the emissions and boundary conditions to 
the products detailed in section 3.5. The assumptions made to define the B and R matrices 
have been detailed in Fortems-Cheiney et al. (2021) and the main features for the parts of B 
corresponding to the surface emissions are recalled in Table 1. 
 
Table 1 – Assumptions on the uncertainty in the NOx and CO emission products detailed in section 3.5 that 
are used to derive the covariance matrix of the prior uncertainty B.  

 

 Anthropogenic emissions Biogenic emissions 

NOx 50% at 0.5° × 0.5° and daily scale 
Spatial correlations of 50km 
No day to day temporal correlation 

100% at 0.5° × 0.5° and daily scale 
Spatial correlations of 50km 

CO 100% at 0.5° × 0.5° and daily scale 
Spatial correlations of 50km 
No day to day temporal correlation 

 

 

The inversions are conducted using the variational mode of the CIF with the M1QN3 algorithm 
for the minimization of the cost function J (Gilbert and Lemaréchal, 1989). At each iteration of 
this minimization, the CIF uses a CHIMERE simulation to compute J for a new estimate of x and 
the adjoint code of CHIMERE to compute for this new estimate of x (Fortems-Cheiney et al., 
2021, Berchet et al., 2021). 

Three inversions are conducted over multiple years: 

- the inversion of NOx emissions based on the OMI data over 2005-2020 

- the inversion of NOx emissions based on the TROPOMI data over 2019-2020 

- the inversion of CO emissions based on the MOPITT data over 2011-2020 

The posterior estimate of the anthropogenic emissions from these different NOx or CO 
inversions are used for the subsequent analysis. 

3.7 Derivation of the European FFCO2 emissions 

The derivations of the 1-month/national scale budgets of the European FFCO2 emissions relies, 
first, on the conversion of the posterior estimate of the NOx or CO total anthropogenic emissions 
at 0.5° resolution from the different inversions into estimates of sectoral NOx or CO 
anthropogenic emissions at national scale. For this purpose, monthly averages of the maps of 
sectoral NOx or CO emissions provided by the TNO-GHGco-v3 inventory restricted to each 
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European country are compared to the monthly averages of the maps of total anthropogenic 
emissions from the inversions at 0.5° resolution. The sectoral distribution is defined by five large 
groups of activity sectors: energy, industry, residential, road transport and the rest of the 
sectors, within which all emissions from the TNO-GHGco-v3 inventory with a more detailed 
sectoral distribution are aggregated. The spatial distribution at 0.5° resolution of the inventory 
for a given country, month and sector is assumed to be accurate and significantly different from 
that for the other sectors. Based on this assumption, the spatial patterns of the differences 
between the sectoral maps from the inventory and the maps from the inversion are interpreted 
in terms of differences between the sectoral budgets of emissions at the country and 1-month 
scale. Therefore, for each country and month, the five temporally average sectoral maps of NOx 
or CO emissions from the TNO-GHGco-v3 inventory regridded at 0.5° resolution are rescaled 
(with a set of five scaling factors) so that their resulting sum fits the temporally average map of 
NOx or CO total anthropogenic emission at 0.5° resolution from the inversion. The optimal fit is 
found by minimizing the root sum square misfits at 0.5° resolution between the sum of the 
rescaled sectoral maps from the TNO-GHGco-v3 inventory and the map from the inversion. In 
practice, a simple analytical inversion scheme is used to infer the optimal set of five scaling 
factors to be applied to the five average sectoral maps of NOx or CO emissions from the TNO-
GHGco-v3 inventory  

Finally, for each country and month, these optimal scaling factors are applied to the sectoral 
budgets of the FFCO2 emissions from the TNO-GHGco-v3 inventory. The resulting FFCO2 
emission budgets are the product which is documented in the CoCO2 submission to the GST. 
Implicitly, this last operation is equivalent to use the NOx-to-FFCO2 or CO-to-FFCO2 
anthropogenic emission ratios from the TNO-GHGco-v3 inventory for each country, month and 
sector to convert the sectorized NOx or CO emission budgets into FFCO2 emission budgets. 
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4 Estimates from a Carbon Cycle Fossil Fuel 
DataAssimilation System 

4.1 General presentation 

The Carbon Cycle Fossil Fuel Data Assimilation System (CCFFDAS, Kaminski et al., 2022) 
pursues an innovative approach to the estimation of fossil fuel emissions in that it combines top-
down (inverse modelling) and bottom-up (forward modelling) of sectoral fossil fuel emissions 
and of the terrestrial biosphere. 

With respect to the user requirements identified by CoCO22, the CCFFDAS addresses by 
construction the user requirement of disentangling fossil fuel CO2 emissions and natural flux. 
Further, it is worth noting that the system can be operated in two modes. The synergistic mode 
includes (IEA or other) sectoral national emission totals as an observation used in the model 
parameter calibration. Alternatively, CCFFDAS can be operated in verification mode, i.e., 
without using the IEA sectoral national emission totals. This latter mode provides emission 
estimates that are largely independent of data used for the bottom-up estimations of emission, 
and thus address another user requirement. 

In the following we describe the setup that has produced Figure 5 of D6.5 Data contribution of 
the European CoCO2 project to the first Global StockTake. 

 
2https://www.coco2-project.eu/sites/default/files/2022-03/CoCO2-D6-3-V1-0.pdf 
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4.2 Processing steps 

 

Figure 3 – Modelling framework with forward flow of information in CCFFDAS. Boxes represent calculation 
steps by models, blue ovals observables, and the yellow oval the control vector (model parameters and 

initial condition). 

The CCFFDAS consists of a series of numerical, process-based models simulating the global 
atmospheric transport of CO2(Heimann and Koerner, 2003), the sectoral emissions from fossil 
fuel usage and the exchange fluxes (photosynthetic uptake and respiratory release) from the 
terrestrial biosphere (Kaminski et al., 2017). The flow of information in the forward sense 
through the modelling chain is shown inFigure 3. The CCFFDAS version used here separates 
fossil fuel emissions into two sectors, an electricity generation sector and the complement, 
which is termed other sector (see Asefi-Najafabadi et al., 2014; Kaminski et al., 2022). The 
electricity generation is simulated per power plant using a prior emission data set per power 
plant (see section 4.3). Emissions from the other sector are simulated by the Kaya identity 
(Nakicenovic, 2004): the emissions F from the other sector in a 0.1 degree times 0.1 degree 
gridcell x in country c are given by    

     F(x,c)=pP(x)g(x)ef(c). 

The variables on the right-hand side are a scalar multiplier, p, for the population density, P(x), a 
point-wise estimate of the per capita gross domestic product, g(x), a global constant for the 
energy intensity of the economy, e, and a country-wise estimate for the carbon intensity of 
energy production, f(c). Input data sets are listed in section 4.3. The output of these models, i.e. 
the CO2 fossil fuel emissions (from both the electricity generation and the other sector) and the 
CO2 land-atmosphere exchange fluxes, depend on a set of model parameters in the equations 
(the control vector) used for calculating the fluxes. In the Kaya identity these are denoted by 
lower case letters and for the electricity generation sector these are the emissions from each 
listed power station directly. The control vector components for the terrestrial ecosystem model 
are biome specific parameters controling the photosynthesis and heterotrophic respiration. The 
CCFFDAS operates in two steps: 

1. Calibration against observations: The system is used to calibrate these parameters by 

assimilating the observational data streams listed in section 4.3. This calibration is based 

on a Bayesian formalism and uses a variational approach, i.e. a cost function consisting 

of two terms is minimised iteratively. The first term quantifies the misfit of simulated 
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counterparts to the observational data streams and the second term the deviation to 

prior estimates of the parameter vector. The minimisation algorithm relies on code for 

evaluation of the gradient of the cost function with respect to the parameters. This 

gradient is provided efficiently by the adjoint of the modelling chain. This adjoint is 

derived by the automatic differentiation tool TAPENADE (Hascoët and Pascual, 2003). 

  

  

2. Target Simulation: The calibrated model is used to simulate relevant target quantities, 

i.e. sectoral fossil and biofuel emission fields on a 0.1 degree global grid that are 

consistent with the observations and the modelling chain. 

The estimated sectoral emissions on the 0.1 degree grid resolution can then be aggregated to 
various territorial units such as national or regional totals (e.g. the NUTS levels in Europe).
  

4.3 Input datasets 

The input data sets are differentiated into observational data sets that are used for calibration, a 
data set that provides part of the prior information and additional data sets used by the model. 

The observational data sets for calibration are: 

● 2018 sectoral national emission totals from the International Energy Agency (IEA)3 

  

● Night-light intensities observed by satellites (Elvidge et al., 2021) 

  

● Atmospheric CO2 concentrations from measurements provided by the Greenhouse 

Gases Observing Satellites 1 and 2 and from the Orbiting Carbon Observatory 2 (Reuter 

et al., 2013) 

The prior data set consists of: 

● Locations of and emissions from individual power plants for the year 2018 derived within 

CoCO24 

Further data sets used by the modelling chain include: 

● Fraction of Absorbed Photosynthetically Active Radiation by plants derived by the Joint 

Research Centre-Two-stream Inversion Package from satellites (Pinty et al., 2011)and 

made available by the Joint Research Centre of the European Commission via 

(https://fapar.jrc.ec.europa.eu).This product is selected for its outstanding performance 

in a series of validation exercises and cross ECV assessments, see, e.g., Mota et al. 

(2021) and references therein. 

  

● A map of population density (Sims et al., 2022) 

  

● Meteorological data from the fifth generation of ECMWF atmospheric reanalyses of the 

global climate (Hersbach et al.,2020)   

 
3 see  https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy 
4 see Hugo Denier van der Gon and CoCO2 WP2 team; D2.1 Prior Emission data 2018 documentation 
report, available athttps://coco2-project.eu/node/327 

https://fapar.jrc.ec.europa.eu/
https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy
https://coco2-project.eu/node/327
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5 Estimates of AFOLU emissions from CO2 atmospheric 
inversions 

5.1 Introduction 

Figure 6 of the CoCO2 submission to the GST is an update of Figures 1 and 2 of Chevallier 
(2021). In the following we update its description. Computations were performed on the High 
Performance Computing resources of https://www-hpc.cea.fr/ under the allocation 
A0110102201 made by Grand Equipement National de CalculIntensif (GENCI). 

5.2 Inversion Data 

Twice per year since 2011, CAMS and its three precursor projects Monitoring Atmospheric 
Composition and Climate (MACC, https://www.ecmwf.int/en/research/projects/macc-ii) have 
been producing multi-decade analyses of CO2 surface atmospheric measurements over the 
globe in the form of optimised gridded surface fluxes with associated 3D concentration fields 
(Chevallier et al., 2010, with successive updates described in 
https://atmosphere.copernicus.eu/supplementary-services). In 2019, the operational chain has 
been paralleled with four-monthly “Fast Track” experimental analyses of XCO2 retrieved from 
OCO-2 (Chevallier et al., 2019, with successive updates described in 
https://atmosphere.copernicus.eu/supplementary-services). At the time of writing, the latest 
versions of these two products have been: (a) v21r1, that assimilated surface air-sample 
measurements of the CO2 dry air mole fraction made at 146 sites over the globe, from January 
1979 to May 2022, and (b) FT21r2 that assimilated NASA's ACOS bias-corrected land XCO2 
retrievals, version 10 from September 2014 until February 2020 (and another instrument before 
September 2014, but the corresponding data are of lower quality and we do not use it here). 
“FT” stands for Fast Track, since the satellite observations are available faster than most 
surface measurements, but the surface-driven inversion remains the CAMS reference product 
due to slightly lesser agreement with independent atmospheric measurements, as reported in 
the product documentation. The CAMS data are available from 
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion.  

The inversion system follows Bayesian principles formulated within a variational framework. The 
Bayesian approach compensates for the irreversibility of atmospheric transport and for the 
limited observational coverage by the use of prior information on surface fluxes provided by 
inventories (for fossil fuel use, cement production or biomass burning), a model (for terrestrial 
ecosystems) and the interpolation of measurements of surface ocean CO2 fugacity combined 
with a simple gas transfer velocity model. For the interpretation of the following results, it is 
important to note that the annual average of the prior fluxes from terrestrial ecosystems have no 
interannual variability: All interannual variations in the optimised (or “posterior”) vegetation and 
soil fluxes are therefore driven by the assimilated observations, modulated by the interannual 
variations in atmospheric transport represented in the underlying observation operator. The 
inversion does not solve for the emissions from fossil fuel use and cement production, the prior 
values of which come from the UNFCCC National Inventory Reports (NIRs) as much as 
possible (Jones et al., 2021). The variational framework makes it possible to estimate the other 
CO2 surface fluxes at the weekly grid-point scale, with day and night separation, in a unique 
assimilation window, thus ensuring physical and statistical consistency of each inversion 
throughout the years and decades. The size of the grid points corresponds to that of the 
underlying global atmospheric transport model, currently 3.75° in longitude and 1.875° in 
latitude. The reader is referred to the above articles and technical reports for a detailed 
description of these products and of the processing chain that generated them. 

5.3 Aggregation in space and time 

The relatively high resolution of the inversion (73,700 variables controlled per month) compared 
to the density of the assimilated atmospheric data, at least for the surface-air-sample-driven 
inversion, is motivated by the risk of degradation of the inversion product by the aggregation 
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error studied by Kaminski et al. (2001) and Bocquet et al. (2011), when running at coarse 
resolution. Despite the availability of high-resolution outputs, the inversion product is typically 
post-processed to be presented at annual subcontinent scales (Chevallier et al., 2010) or even 
in broad latitudinal bands (e.g., Friedlingstein et al., 2022). Here, we examine both CAMS CO2 
inversion products v21r1 and FT21r2 at country-scale resolution. In most cases, the country-
scale resolution is an intermediate between the usual subcontinent resolution and the grid point 
resolution. In time, we choose the usual annual scale of the national reporting to the UNFCCC. 

We use the 0.08° × 0.08° country mask of Klein Goldewijk et al. (2017) to determine, for each 
UNFCCC party, the fraction that it occupies in each land portion of the 3.75° × 1.875° model 
grid points. We multiply this fraction by the fraction of non-wild area deduced from the 1 km2 
global terrestrial human footprint maps of Venter et al. (2016, 2018a, 2018b) that synthesise 
diverse information on human population pressure (population density), human land use and 
infrastructure (built-up areas, night-time lights, land use/land cover), and human access 
(coastlines, roads, railroads, navigable rivers) into a generic Global Human Influence Index with 
values between 0 and 50. In the absence of a clear delineation between managed and 
unmanaged plots in the UNFCCC reports, all index values larger than zero (i.e., all values that 
indicate some human influence) are considered to correspond to managed areas here. The 
maps are available for years 1993 and 2009: We linearly interpolate the fractions in-between 
those years and keep the 1993 and 2009 values for earlier and later years, respectively. This 
fractional coverage allows us to aggregate the grid-point land vegetation flux values (i.e., the 
total posterior fluxes minus the prior emissions from fossil fuel use and cement production), 
while conserving the mass of carbon fluxes at all spatial scales. Lastly, weekly diurnal and 
nocturnal fluxes have been aggregated on an annual scale. 

5.4 Uncertainty statistics 

The uncertainty of the posterior fluxes provided by the inversion system is directly deduced from 
the Bayesian framework which combines the uncertainty in the prior fluxes, the uncertainty of 
the observations as defined from the inversion observation operator (consisting mainly of an 
atmospheric transport model and, for the assimilation of satellite retrievals, of a vertical 
averaging kernel) and the observation operator itself, to estimate it. The statistical models of the 
CAMS inversion system represent error variances and correlations at various spatiotemporal 
scales. They have been the subject of dedicated studies at different scales which give us 
confidence in their broad realism (Chevallier et al., 2006, 2012; Chevallier and O'Dell, 2013). In 
practice, we use a robust Monte Carlo method, made of ensembles of two-year inversions 
(much easier to parallelize than the inversions made on the full inversion periods), to explore 
the uncertainty space in a manner consistent with the assigned prior and observation error 
statistics (Chevallier et al., 2007). Each member of the inversion ensembles was aggregated as 
the reference data to produce the uncertainty statistics at the annual scale and at the 
appropriate spatial scale. Note that the ensemble of inversions over two years barely describes 
the interannual correlation of the uncertainty. These correlations would prevent the uncertainty 
of multi-annual averages from decreasing with the square of the number of years.  

5.5 Inventory data 

We have used the latest AFOLU data reported under the UNFCCC at the time of writing and 
available on the UNFCCC portal (https://unfccc.int/ghg-inventories-annex-i-parties/2022). They 
cover the period between 1990 and 2020, at least partially, depending on the party. Their 
territorial scope differs from the data reported within the framework of the Kyoto Protocol and 
available on the same portal with the same format: Our land mask for each party accounts for 
these subtle differences that involve the status of overseas territories, although they play an 
insignificant role in the following results. For Annex-I parties (Canada, EU27+UK, Kazakhstan, 
Russia and USA), we simply use the sum of the net CO2 fluxes from the agriculture sector and 
the land-use, land-use change and forestry (LULUCF) sector reported in their common reporting 
format tables (CRF) submitted in 2022. In contrast to our uniform definition of managed versus 
unmanaged grid points for the inversion data described above, parties to the UNFCCC mainly 
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determine which areas are managed themselves, as long as they apply their definition 
consistently over time and report it in a transparent manner (see Chapter 3 of IPCC, 2006).  

For Brazil, we use Appendix I of its fourth biennial update report (BUR) that gives emission 
values for years 1994, 2000, 2010, 2012, 2015, 2015, but note that no values are reported for 
the agriculture sector. Methodological details were taken from Brazil's Third National 
Communication. 

For China, we use Tables 2−7, 2−13, 2−14, 2−15 and 2−16 of its second BUR that give 
emission values for years 1994, 2005, 2010, 2012, and 2014. 

DR Congo has not submitted any BUR to UNFCCC yet and we rely on its third national 
communication to UNFCCC that provides CO2 net emissions values for the LULUCF sector for 
the years between 2000 and 2010, but none for agriculture. 

For India, we use Tables 2.2 and 2.19 of the initial and second national communications to 
UNFCCC, respectively, and Tables 2, 2.2 and 2.4, respectively, of the three successive BURs. 

For Mongolia, we use Tables 2−4 of its first BUR. That table combines all reported greenhouse 
gases for each year between 1990 and 2014, but, consistent with the remark in Section  of that 
BUR, its LULUCF values are very close to those for the AFOLU numbers for the sole CO2 fluxes 
given in the annex for years 1990 and 2014. We therefore use the full time series of Table 4. 
Note that Mongolia only reported source categories forest land remaining forest land and 
harvested wood products for the LULUCF sector. 

The various documents or the Annex I NIRs report an uncertainty analysis of the numbers. The 
two-sigma uncertainty is usually of a few tens of percent for the fluxes from the LULUCF sector 
(32% for Brazil in 2016, ∼40% for Canada, 21% for China, ∼20% for EU27+UK, 36% for Forest 
land Remaining Forest land in Mongolia in 2014, ∼20% for the USA, no estimate for DR Congo 
and India for that CO2 sector). NIRs of Kazakhstan and Russia are in Russian and have not 
been exploited in order to avoid any misinterpretation. 

For a like-for-like comparison, some emission and removal terms not included in the NIRs need 
to be subtracted from the inversion estimates and the terrestrial biospheric carbon input to the 
inland water network needs to be added to the inversion system. These correction terms are 
estimated from the scientific literature and from living databases like the one maintained by the 
FAO (Ciais et al., 2022, Deng et al., 2022). 

5.6 Party Selection 

Our rationale for limiting our analysis to the 10 parties named earlier is as follows: We limit the 
analysis to the parties whose geographical area is much larger than the inversion grid resolution 
and where the inversion provides a significant improvement to the prior fluxes. The first criterion 
is represented by a threshold on the surface areas: Parties smaller than 1 million square 
kilometres (i.e., about 15 times the grid point size) are excluded. The second criterion is 
represented by a maximum value of two thirds imposed on the ratio of posterior over prior 
uncertainty standard deviations for both v21r1 and FT21r2 for the party annual flux in 2015. 

This selection leads to the following 10 parties: Brazil, Canada, China, DR Congo, EU27+UK 
(called “EUA” in the submission to UNFCCC), India, Kazakhstan, Mongolia, Russia and USA. 
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6 Estimates of CH4 emissions from the extended 
Copernicus Atmosphere Monitoring Service global 
monitoring system 

6.1 Forward model 

The ECMWF global Integrated Forecasting System (IFS), which provides the operational 
Copernicus Atmosphere Monitoring Service (CAMS, https://atmosphere.copernicus. eu/, last 
access: 15 January 2022) greenhouse gas (GHG) forecast (Agustí-Panareda et al., 2019), was 
used to generate the forward model integrations used in this study. These were performed from 
January to June of 2019 and 2020, with additional case study simulations performed for June 
2018, November 2019 and July to September of 2020. Computational cost prevented simulating 
the full period (2018–2020). Simulations were performed using a horizontal cubic octahedral 
reduced Gaussian grid (TCo399: ∼ 25 km) and 137 vertical levels with coupled meteorology at 
operational forecast timesteps of 15 min and 3-hourly output. Monthly gridded prior estimates of 
anthropogenic emissions were taken from the CAMS global emissions product, CAMS-GLOB-
ANT v4.2, (Granier et al., 2019), which combines existing products. The Global Fire Assimilation 
System (GFAS) provided daily biomass burning emissions (Kaiser et al., 2012). We used a 
monthly climatology of wetland emissions based on the LPJ-WHyMe model (Spahni et al., 
2011). Remaining fluxes from oceans (Lambert and Schmidt, 1993; Houweling et al., 1999), 
termites (Sanderson, 1996) and wild animals (Houweling et al., 1999) were used at the highest 
available spatiotemporal resolution. The atmospheric CH4 sink comprised of a monthly mean 
climatological loss rate field (Bergamaschi et al., 2009), which represents loss reactions with 
hydroxyl, chlorine and atomic oxygen radicals. A gridded surface soil sink was also used 
(Ridgwell et al., 1999). Initial conditions for the 3D atmospheric state of CH4 were taken from 
the CAMS CH4 inversion product (Segers and Houweling, 2018).  
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6.2 4D-Variational inversion 

We used the 4D-Var IFS system, cycle 47R1, employed operationally at ECMWF between June 
2020 and May 2021. More detailed information on the IFS 4D-Var system can be found in 
Rabier et al. (2000). The incremental algorithm used consists of solving a series of quadratic 
minimisation problems (inner-loop) constructed by linearising the initial (non-linear) cost function 
around updated estimates of the state vector (outer-loop). To constrain surface emissions, the 
state vector is augmented by a parameter control vector that consists of a 2D scaling factor 
applied to a prior emission inventory. In our configuration, the posterior scaling factors are 
optimised on a regular 2D grid (∼ 80 km) within a 24-h window and then applied to the prior 

emission inventory defined on a grid of ∼ 10-km resolution (Figure 4). Prior emission errors are 
assumed to be independent between 24-h inversion cycles (i.e. each 24-h inversion uses the 
same uniform scaling factor of 1 and the same prior errors). This choice was driven by the lack 
of information about temporal error correlations in current prior inventories. Currently, the error 
covariance for the CH4 initial state vector is taken from a climatology and fixed in time. As a 
result, posterior errors in methane emissions and 3D state are not propagated forward across 
data assimilation cycles in this configuration, which is a technical limitation of our current system 
and will be addressed in subsequent versions. We use an online 4D-Var data assimilation 
system, where the meteorological fields are part of the control vector and optimised jointly with 
the emission scaling factors. As a result, the transport errors associated with uncertainties in the 
initial conditions of the meteorological variables are accounted for in our inversion. This is in 
contrast with widely used offline inversion systems, wherein transport errors are typically 
prescribed on an ad-hoc basis and fixed. Note that in our experiments the background errors for 
the meteorological variables at the initial time are constructed based on a climatology, and 
therefore are not flow-dependent. 

The scaling factors derived from the inversion were applied to sector-specific prior maps for 
source attribution. A caveat to this approach is the assumption that co-located sectors have the 
same scaling factor applied, which can only be overcome with the use of co-emitted species 
observations such as ethane or isotopologues. However, this is unlikely to noticeably impact 
these results as at the relatively high increment resolution used (∼ 80 km) CH4 sectors are 
rarely co-located. Missing sources in the prior are also not accounted for when using a posterior 
scaling factor.  
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Figure 4 (a) Schematic of different resolutions used in the inversion shown by pseudo-data for five sectors. 
The magnitude of prior emissions at ∼ 9 km (left panel) and those same emissions used as input to the 

forward model at ∼ 25 km (middle panel). The inversion increment at ∼ 80 km, resulting scaling factors are 
applied to all sectors within the grid cell, the boxes indicate relative contribution per sector (right panel). (b) 
Schematic of inversion setup using the 24-h window, correcting for the initial 3D state, emissions, and initial 
conditions in the prior of the subsequent window. 
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6.3 Prior information 

Anthropogenic sector-specific grid cell uncertainties, taken from Maasakkers et al. (2016), 
provided the initial prior estimate for countries with well-developed statistical infrastructures or 
Annex I countries (IPCC, 2006). For Non-Annex I countries, the same sector-specific 
uncertainties were further increased by 50 %. Globally, constant wetland uncertainties were 
estimated at 58 %, taken as the standard deviation from the WetCHARTs ensemble (Bloom et 
al., 2017). We assume the standard deviation of the WetCHARTs ensemble to provide a 
reasonable uncertainty estimate of the LPJ-WHyMe emissions used here. Initially, all other 
biogenic uncertainties were estimated as 100 %. The atmospheric sink was not optimised by the 
inversion. Sensitivity experiments where prior errors were perturbed and validated against 
independent observations were used to evaluate prior uncertainty assumptions. Given that 
anthropogenic emissions are typically from point sources (e.g. fossil fuel extraction), we 
assumed no spatial prior error correlation given that the derived increments are at ∼ 80 km. 
Wetland emissions would typically require defined spatial correlations; however, given the 
uncertainty of these structures, the focus of this study being anthropogenic emissions and 
limited occurrences of co-located emissions from wetland and anthropogenic sources we have 
chosen to omit these for simplicity. Total grid cell uncertainties, used in the control vector, were 
calculated using the error propagation method. All prior uncertainties are assumed to have a 
log-normal distribution to prevent negative emissions.  

6.4 Observations 

The observations used in the meteorological component of the IFS 4D-Var system include 
satellite radiances, conventional ground-based and radiosondes, and aircrafts and ships data, 
for which the coverage and quality is constantly monitored prior the assimilation. With specific 
focus on CH4, the TROPOMI instrument on-board the Sentinel-5 Precursor satellite provides 
near-global daily coverage of XCH4 with a nadir ground pixel size of 7 km × 7 km and near-
surface sensitivity (Veefkind et al., 2012; Lorente et al., 2021). We used operational 
observations, which became available in April 2018 and were bias corrected, as in Barré et al. 
(2021). TROPOMI uncertainties (< 1 %) provided as part of the CH4 product were applied within 
the minimisation routine and averaging kernels were used (Hasekamp et al., 2019). Additional 
XCH4 observations from IASI and GOSAT, and their associated uncertainties of ∼ 2 % and < 1 
%, respectively, are assimilated into the system to provide additional constraints as described 
by Massart et al. (2014). Poor quality data are removed based on the provided quality flags.  
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