
WP4 LOCAL AND REGIONAL MODELLING AND DATA ASSIMILATION

Grégoire Broquet, Dominik Brunner and the WP4 team

CoCO2 Presentation Day

05/12/2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958927.

Overview WP4

Local scale – Point sources and Cities

T4.1 Local scale model performance assessment and improvement EMPA, WU, CEA,VUA, MPG, FMI, TNO, DWD, ENPC, ECMWF

T4.2 Local inversion approaches for efficient processing of plume images with a large spatial and temporal coverage FMI, CEA, EMPA

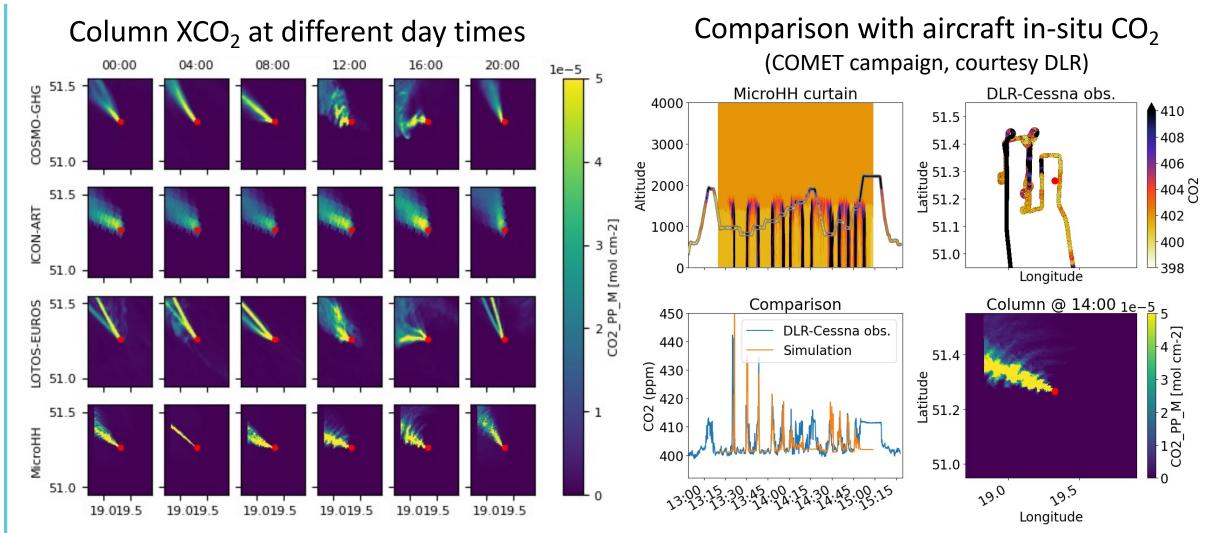
T4.3 Local inversion approaches using atmospheric transport models ENPC, CEA, iLab, WU, UEDIN, FMI, VUA, AGH

National scale

T4.4 National scale inversions DLR, UEDIN, TNO, DWD, EMPA, CEA, ENPC, VUA, FMI, ULUND, ECMWF, AGH

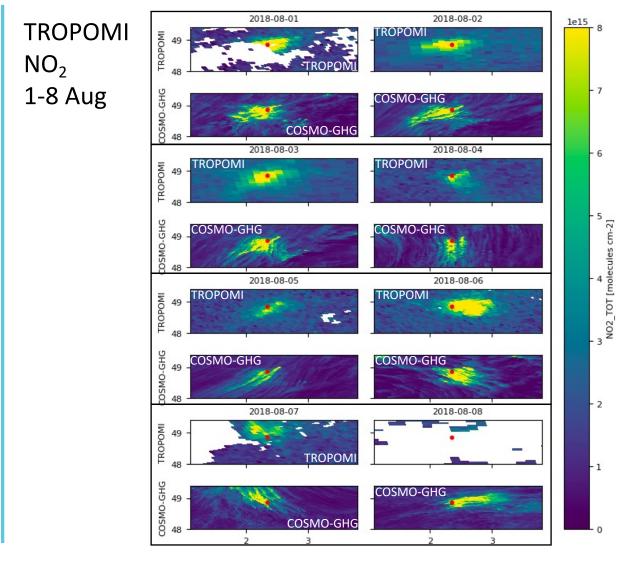
T4.5 Guidance and synthesis between the local and regional scale estimates CEA + all

D4.2: Assessment of plume model performance, due Dec 2022


Overview of plume simulations

ID	Description	Time period	Available observations	Modeled with	NL
BEL	Power plant Bełchatów, Poland	6-7 Jun 2018	In-situ observations (CO ₂) and remotely sensed observations (XCO ₂) from three aircraft; TROPOMI NO ₂	COSMO-GHG, ICON-ART, LOTOS-EUROS, MicroHH	PAR
JAE	Power plant Jänschwalde, Germany	22-23 May 2018	In-situ observations (CO ₂) and remotely sensed observations (XCO ₂) from two aircraft; TROPOMI NO ₂	COSMO-GHG, ICON-ART, LOTOS-EUROS, MicroHH	A C
LIP	Steel plant Lipetsk, Russia	12-13 Jun 2019	TROPOMI CO	COSMO-GHG, MicroHH	
MAT	Power plant Matimba, South Africa	24-25 Jul 2020	TROPOMI NO ₂	COSMO-GHG, MicroHH	
BER	Berlin urban area, Germany	18-27 Jul 2018	In-situ observations (CO_2) from one aircraft; TROPOMI NO ₂ .	COSMO-GHG, LOTOS-EUROS	
PAR	Paris urban area, France	1-8 Aug 2018	Seven high-precision stationary CO ₂ measuring stations; TROPOMI NO ₂	COSMO-GHG, WRF-CHEM	h
NL	Randstad area Netherlands	16-23 Jun 2018 16-23 Dec 2018	One high-precision stationary CO ₂ measuring station; 43 stationary NO ₂ measuring stations; TROPOMI NO ₂	LOTOS-EUROS	

MA


Example 1: Power plant Belchatow, Poland, 7 Jun 2018

tower

Example 2: City of Paris, 1-10 Aug 2018

(m 425 00 400 in-situ CDS; R²=0.49; RMSE=6.88 CDS; R²=-0.27; RMSE=10.85 (mdd) 450 OD 400 CO_2 1-9 Aug COU; R²=0.60; RMSE=4.94 COU; R²=0.71; RMSE=4.23 (mdd 450 00 400 GNS; R²=0.54; RMSE=6.92 GNS; R²=0.74; RMSE=5.15 (Lud 450 00 400 JUS; R²=-2.94; RMSE=17.94 JUS; R²=-0.75; RMSE=11.95 (mqq) 500 õ 400 OVS; R2=0.44; RMSE=8.47 OVS; R²=0.50; RMSE=8.04 (mdd) 200 400 500 SAC_15; R²=0.52; RMSE=7.77 SAC_15; R²=0.40; RMSE=8.66 (mdd) 200 400 SAC_60; R²=0.55; RMSE=4.75 SAC_60; R²=0.57; RMSE=4.61 CO2 (ppm) 500 400 sim

COSMO-GHG

concentrations

WRF-CHEN

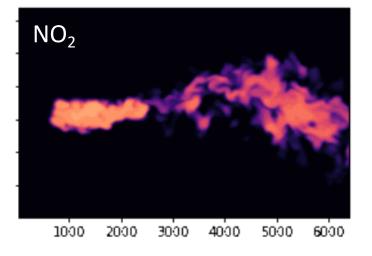
COSMO-GHG AND; R²=0.35; RMSE=4.42

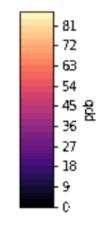
WRF-CHEM

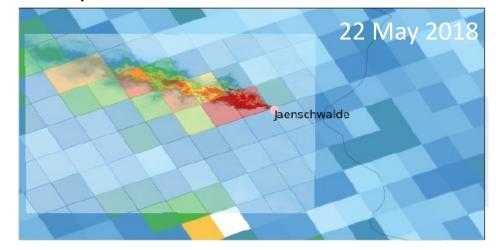
400 500

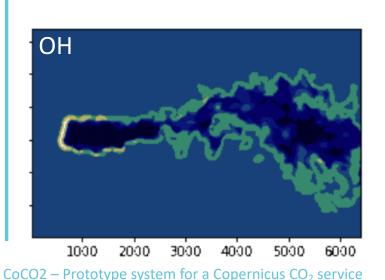
sim

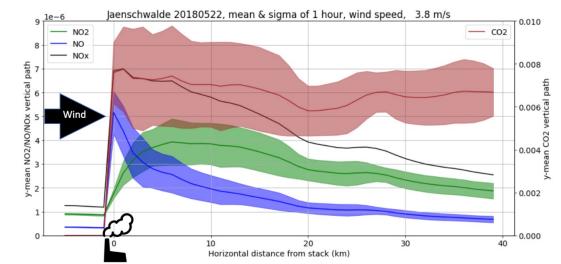
concentrations


AND; R²=0.53; RMSE=3.74

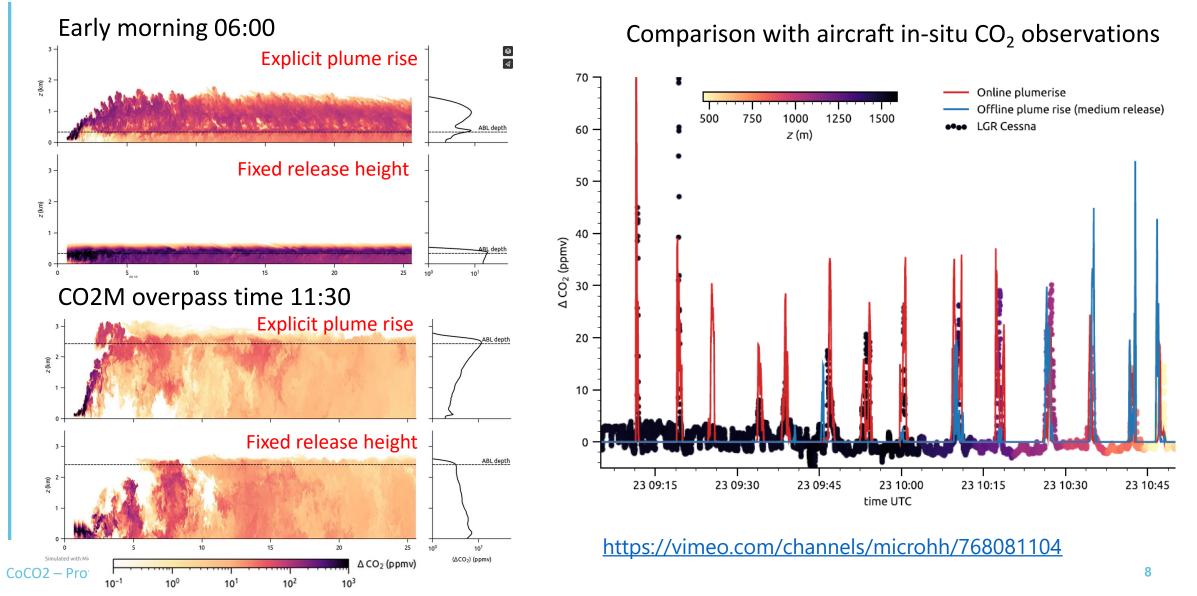

CoCO2 – Prototype system for a Copernicus CO₂ service


Simplified chemistry simulations with MicroHH (M. Krol, WUR)


Snapshot of simulation at 25 m resolution



Comparison with TROPOMI



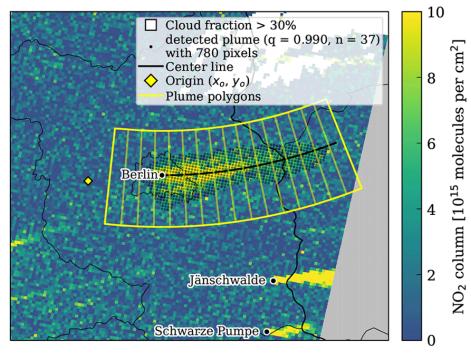
NO, NO₂, NO_x and CO₂ along plume

Plume rise simulations for Jänschwalde with MicroHH (B. van Stratum, WUR)

Task 4.2: Light plume detection & quantification methods

D4.4: Benchmarking of plume detection and quantification methods, due Dec 2022

Methods tested


- EMPA: Cross Sectional (CS)
- EMPA: Gaussian Plume (GP)
- EMPA: Integrated Mass Enhancement (IME)
- LSCE: Light Cross Sectional (LCS)
- FMI: Divergence (DIV)

Benchmarking data and configurations

- Synthetic CO2M observations of XCO₂ and NO₂ from SMARTCARB
- 2 periods: full year 2015, 3 months May Jul
- 2 cloud conditions: With and without
- 2 auxiliary tracer cases: With and without NO₂
- 2 wind fields: COSMO and ERA5 winds

Further tests with real TROPOMI observations and simulated plumes from Task 4.1

Example of plume detection

Technical details

- All methods implemented in python package ddeq <u>https://gitlab.com/empa503/remote-sensing/ddeq</u>
- Data on ICOS fileshare <u>https://fileshare.icos-cp.eu</u>
- Analysis with jupyter notebooks at ICOS-CP

abla .

Task 4.2: Light plume detection & quantification methods

Beirle's divergence method applied to XCO2 observations

(Hakkarainen et al., Frontiers in Remote Sensing, 2022)

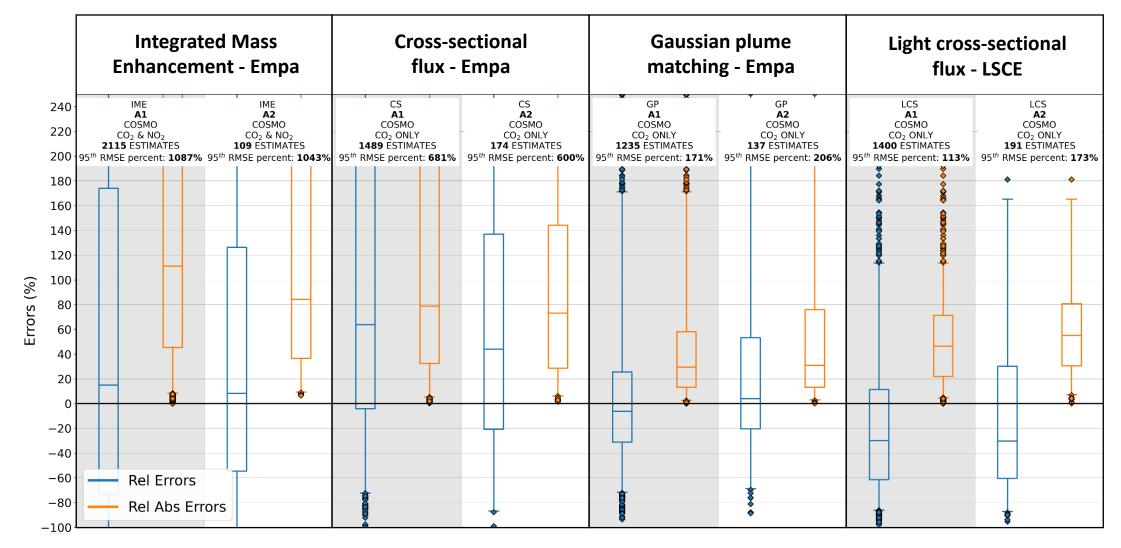
Flux divergence equals sum of emissions *E* and sinks *S*:

$$F = E - S, \qquad F = (F_x, F_y) = (V \cdot u, V \cdot v)$$

Divergence maps for NO_x and CO_2 NO, divergence (\times 10³) Α В CO₂, no background, no noise 52.5 52 1500 51.5 1000 51 vg m⁻²s⁻¹ CO₂, bg removed, denoised "mean filter 25" 500 CO₂, bg removed, low noise Е 52.5 52 51.5 -500 51 -1000 12 13.5 12.5 15. 15 CoCO2 – Prototype system for a Copernicus CO₂ service

V = vertical column density from satelliteu, v = horizontal wind components, e.g. from ERA5

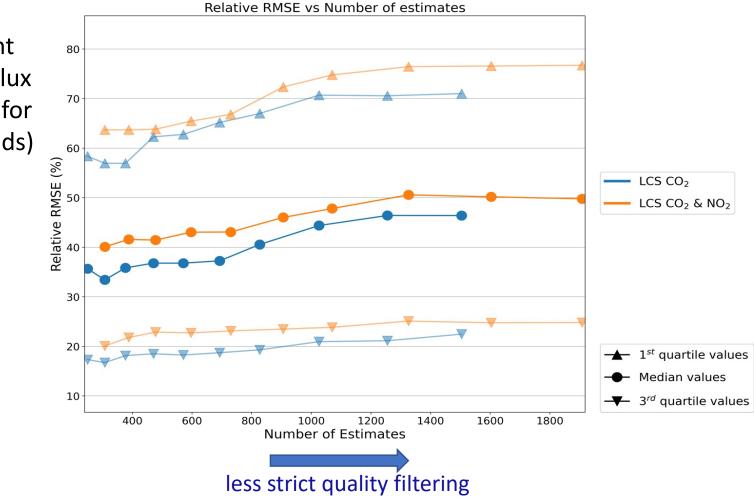
Method works well for NO_x


Additional challenges for CO₂:

- Much lower signal:noise, denoising necessary
- High background levels need to be subtracted before applying method
- Biospheric fluxes
- Strict cloud filtering needed

Task 4.2: Light plume detection & quantification methods

Impact of clouds: Compare benchmark results btw. cases A1 (no clouds) and A2 (cloud threshold)



Task 4.2: Light plume detection & quantification methods

Impact of quality filtering for poor plume detection & quantification cases

-> Tradeoff between number of estimates and quality of results

Results from light cross-sectional flux method of LSCE for case A1 (no clouds)

Task 4.3: Local inversions using atmospheric transport models

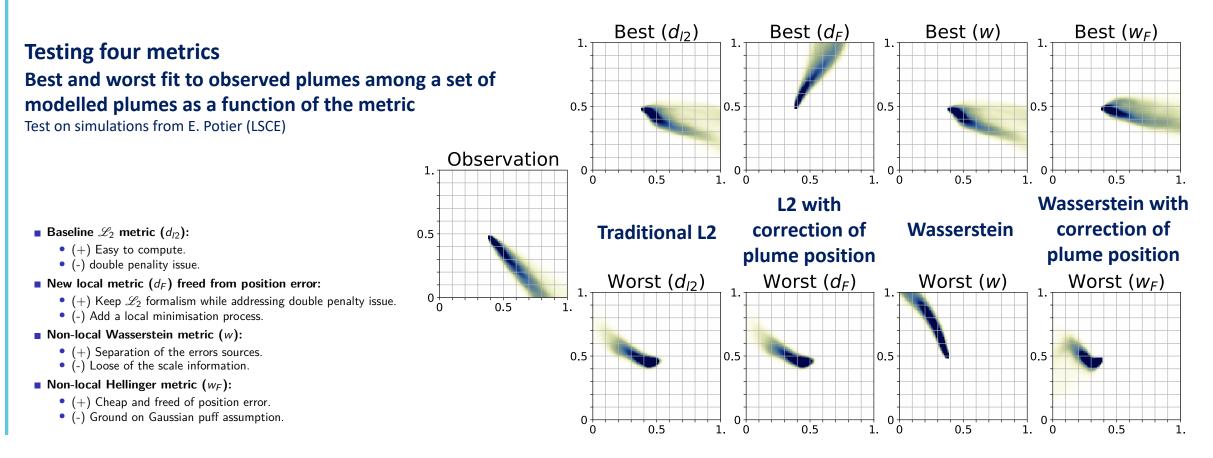
- **Objective:** develop approaches using info from high resolution models to detect & invert plumes in XCO2 images
- estimates of the sources (industrial sites, cities) in complex situations where the light approaches (T4.2) face limitations
- → insights on spatial & sectoral distribution of emissions in cities

	T4.3.1 Overcoming uncertainties in transport model	New metrics for comp of model vs observed plume Using CNN trained on model to detect & invert plumes	Tests on pseudo images of XCO2 plumes from Paris, Berlin and power plants	CEREA	19.46°N 18.94°N 18.42°N	
	Potential of the co- assimilation of CO or NO2 images for cities	Analysing CO/CO2 & NO2/CO2 ratios over urban areas	Global analysis of TROPOMI NO2/CO & OCO-2/3 XCO2	UEdin		Courtesy MCAUTE Cafe 100.22*W 99.74*W 99.26*W 98.78* TROPOMI Tropospheric NO ₂ fossil0036, fossil Mexico City Mexico 20:37 UTC 11 Apr 2020, Orbit 12931
	Inferring spatial & sectoral distribution of city emissions Optimizing city-scale	Propagation of uncertainties with a HR DA system	CCFFDAS assimilating XCO2 and NO2 images over Berlin	iLab	19.96°N 19.42°N	
A	inversion configurations Assessing their robustness	Tests with pseudo images from LES model	EnKF over the Randstad area	VUA	18.88°N	
	T4.3.2	Tests with real measurements	Analytical inv. over Krakow	AGH	18.34°N	

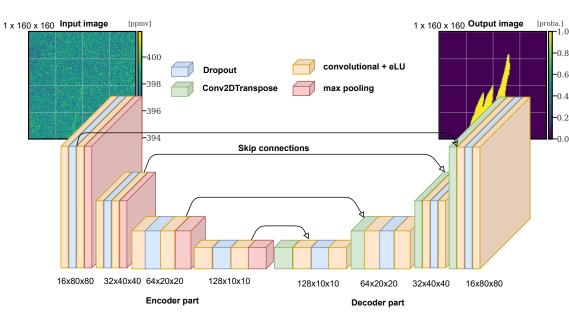
Snapshot Area Map (SAM)

of XCO₂ over Mexico by

OCO-3 and comparison to TROPOMI NO₂ (source: JPL)


OCO-3 Bias Corrected and Quality Flagged X_{CO2} SAM Mode (Unknown), fossil0036, "fossil Mexico City Mexico"

Ops_B10202_r02 15:36 UTC 11 Apr 2020, Orbit 5322


Non local evaluation metrics to compare modelled and observed plumes which does not penalize isometries

Vanderbecken et al., 2022, AMTD

Plume segmentation and inversions based on Convolutional Neural Networks

Plume segmentation: U-Net algorithm fed with pairs of XCO2 full fields and plume mask

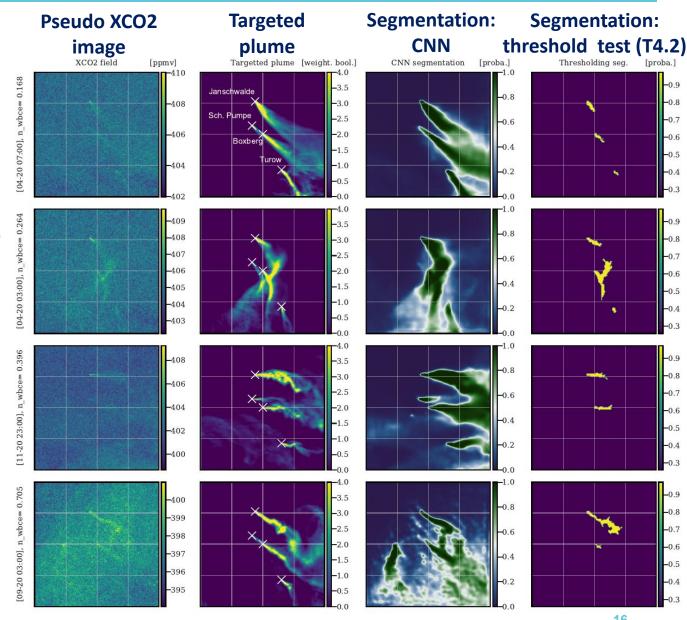
Tests on XCO2 pseudo-images

J. Dumont Le Brazidec / CEREA

- → modeled with WRF-Chem around Paris (LSCE/Suez Origins)
- → modeled with COSMO-GHG around Berlin & Power Plants in Germany (SMARTCARB project / EMPA)

Target plume + background + instr. noise Point source plume [ppmv] Background add. [ppmv] Instrument noise add. [ppmv] -0.40-406.3-0.32-406.0Berlin -0.24406 -405.7-0.16-405.4-404-0.08 -405.1402412.5 -408.6-0.16-411.0-408.5de-France -0.12-409.5-408.4-408.0-0.08-408.3ģ -406.5-0.04-408.2L05 0 -3.2-405.0 -404.8-2.4-403.5-404.0-1.6-402.0-403.2-400.5-402.4-0.8399.0

Examples of XCO2 field simulation

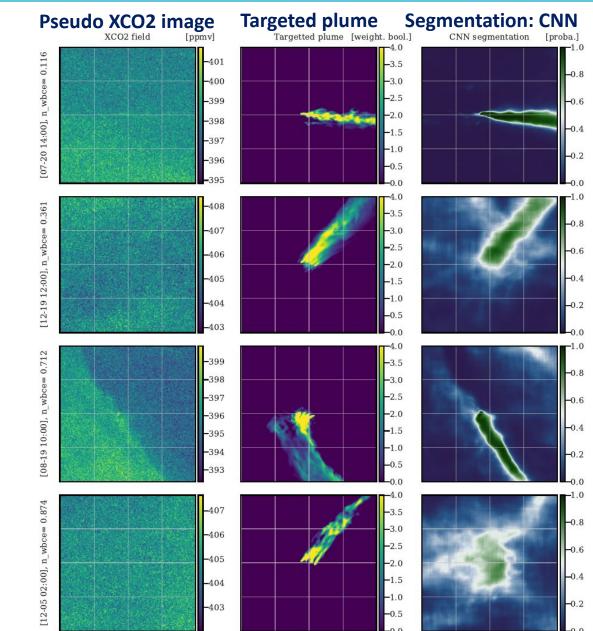

Plume 1 ntation based on Neural Networks Convol

Dumont Le Brazidec et al., 2022, submitted to GMD

Training and tests on images of the cluster of PP plumes around Boxberg

Rows = quartiles of performances from best to worst: the performance is based on a weighting of the plume mask by the plume concentration

Ability to handle overlapping plumes \rightarrow

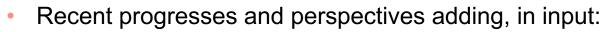

Plume segmentation based on Convolutional Neural Networks

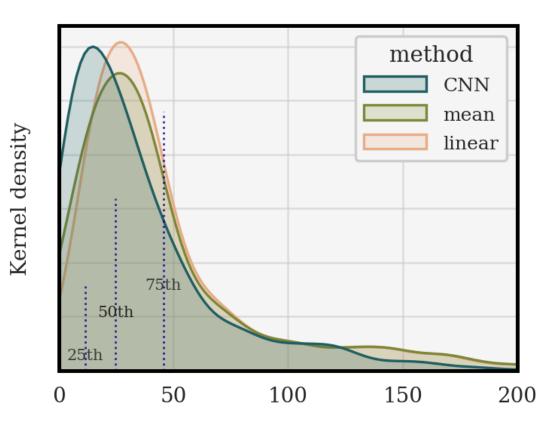
Dumont Le Brazidec et al., 2022, submitted to GMD

Training on images over Paris + PP and tests on images of the plume from Berlin

Rows = quartiles of performances from best to worst: the performance is based on a weighting of the plume mask by the plume concentration

- performances close to those when training the CNN with images from Berlin
- towards a "universal" algorithm trained with a limited set of simulations to cover wide sets of sources: from high to low cost method
- Now investigating the use of NO2 images to support the XCO2 plume segmentation (1st results promising)

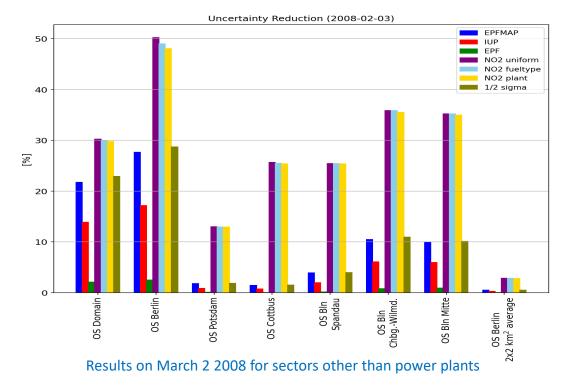



Plume inversion based on Convolutional Neural Networks

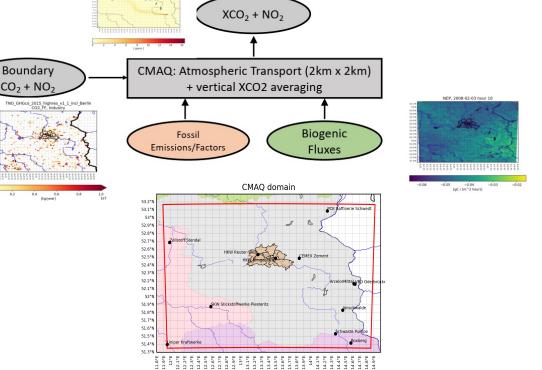
- Estimates of the total emissions from the source
- Until recently, encouraging results when training the CNN with sets of images including the targeted source

Inversion results corresponding to relative errors on hourly emission from Berlin when using a CNN trained with XCO2 images on Berlin.

- \rightarrow the CNN-based segmentation results
- \rightarrow the NO2 images



Subtask 4.3.2: Spatial resolution of the city emissions

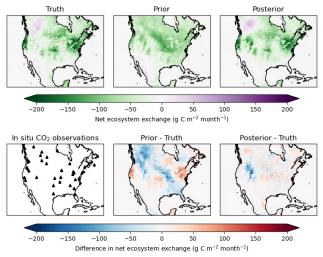

Sensitivity to control vector & ability to solve for the spatial distribution of emissions within cities

Analysis with the CCFFDAS over Berlin

Kaminski et al., 2022, Front. Remote Sens.

CCFFDAS over Berlin

 \rightarrow Ability to solve for the emission of individual districts in Berlin when using both XCO2 and NO2 images CoCO2 – Prototype system for a Copernicus CO₂ service



- Mainly for EU countries, especially for Germany, France, the Netherlands and the UK
- \rightarrow CO₂ but also CH₄ inversions
- → using pseudo (incl. CO2M)/real in situ/satellite CO₂/co-emitted species data for CoCO2 ref years (2018, 2021)
- Objective of the intercomparisons:
- Evaluating standard (fed by WP2-7) and country specific configs, obs networks (impact of CO2M) and methods
- → Assessing their complementarities
- Feeding WP6 & WP8: estimates for GST1 and for assimilation into prototype & supporting developments of national systems

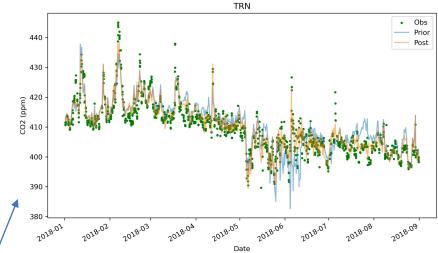
→ Protocol

→ All WP2-WP7 required input available except CO2M pseudo data (coming soon)

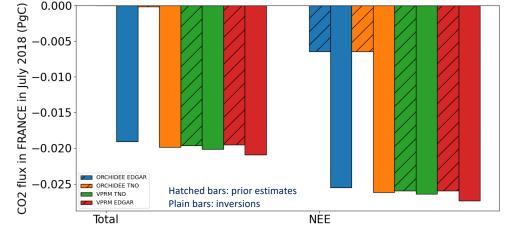
CO2 inversions with pseudo-data at ULUND

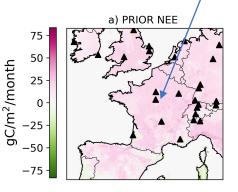
5 km – 1 km – 200 m nested configuration at AGH

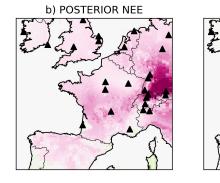
Initial commitments

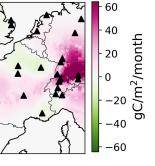

	France	Germany	The Netherlands	Poland	Finland	UK	USA
DLR							
UEDIN							
ΤΝΟ							
DWD							
EMPA							
LSCE							
VUA							
FMI							
ULUND							
ECMWF							
AGH							

Inversions of anthropogenic and natural CO2 fluxes in France using in situ CO2 data


E. Potier / LSCE


- Inversions with variational mode of Community Inversion Framework (CIF) + 10 km res CHIMERE with adjoint
- Control of the NEE at 10 km / 6-h res and of the anthropogenic at the scale of admin regions and 1 day
- Tests of sensitivity to prior estimates of the NEE fluxes and anthropogenic emissions
- $\rightarrow\,$ consistency of the maps and budgets of inverted NEE

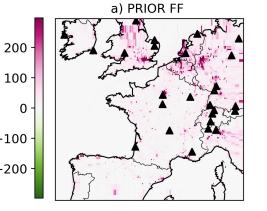


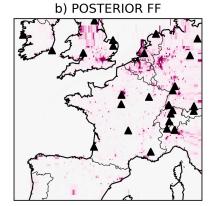

Observed vs modelled CO2 at Trainou

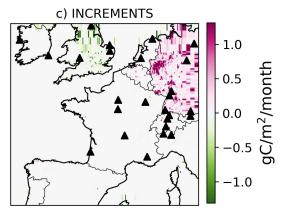
c) INCREMENTS

10 km resolution maps of NEE in Feb 2018 when using VPRM as prior estimate of the NEE

NEE budget for France in July 2018

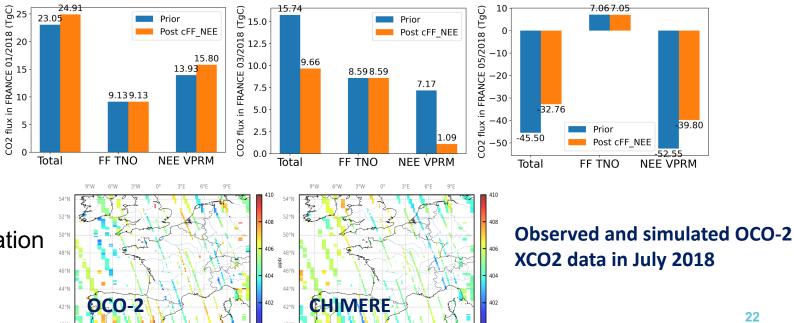



Inversions of anthropogenic and natural CO2 fluxes in France using in situ CO2 data


E. Potier / LSCE

Lack of sensitivity and thus correction to anthropogenic gC/m²/month emission estimates

-10010 km resolution maps of the -200 anthropogenic CO2 emissions in Feb 2018 when using TNO as prior estimate of the emissions



22

Results for Jan, March and May

Next tests include the assimilation of OCO-2 XCO2 data

CoCO2 – Prototype system for a Copernicus CO₂ service

Inversions of anthropogenic and natural CO2 fluxes in Europe using CO2 / XCO2 data

T. Scarpelli / UEdin

- Inversions based on EnKF (100 members) and GEOS-Chem model (0.25°x0.3°)
- Separate control of natural and anthropogenic fluxes
- Current tests assimilating in situ CO2 and satellite (OCO-2) XCO2 separately

In-situ **Satellite** Prior (VPRM) In-situ Satellite (OCO-2) NEE CO2 flux for prior (kg/m2/s) NEE CO2 diff for satellite CO2 base coco2 (kg/m2/s) NEE CO2 diff for insitu CO2 base coco2 (kg/m2/s) Italy France Poland United Kinadom -1.0 -0.5 -15 0.0 0.5 10 1e-8 1e-8 Germany

CO2 NEE for 2018

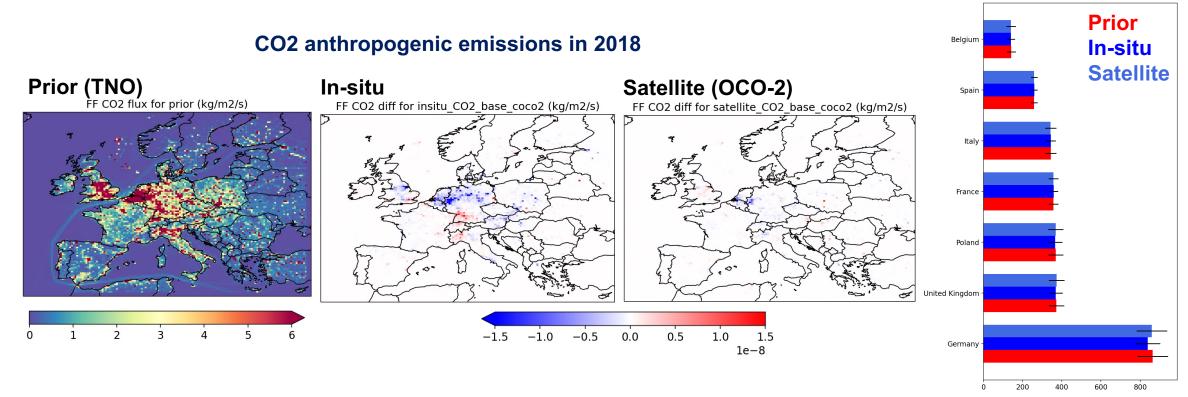
Prior

-300

-200

23

Belgium

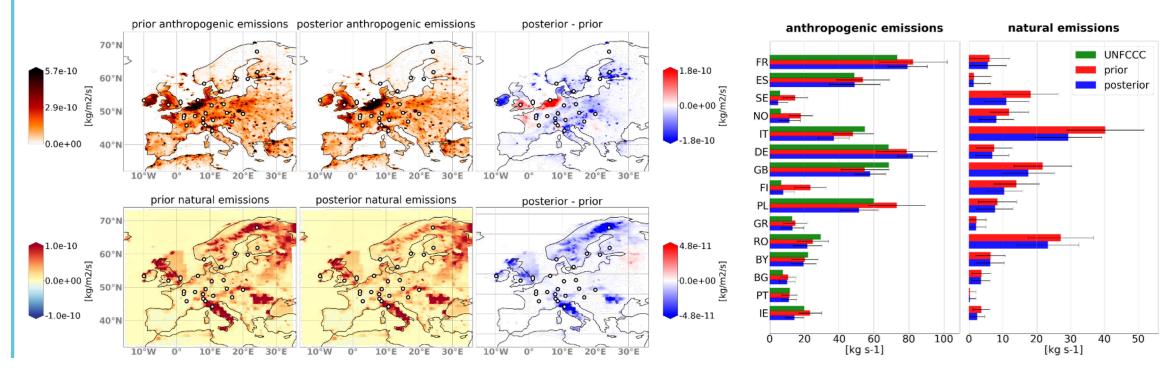


Inversions of anthropogenic and natural CO2 fluxes in Europe using CO2 / XCO2 data

T. Scarpelli / UEdin

- Lack of correction to anthropogenic emissions
- \rightarrow Need for co-emitted species
- → On-going experiments with co-assimilation of satellite CO data

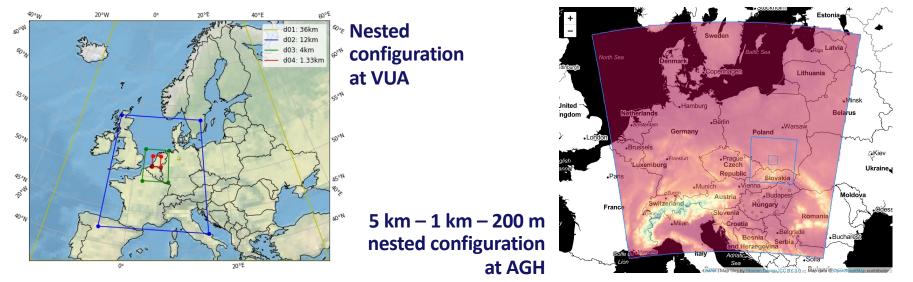
National CO2 combustion emissions in 2018 (Tg)

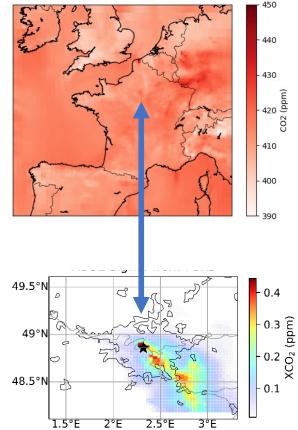

CoCO2 – Prototype system for a Copernicus CO₂ service

Estimation of European CH4 emissions

M. Steiner / EMPA

- Inversions based on ICON-ART-CTDAS (Ensemble Kalman Smoother)
- Separate control of anthropogenic and natural emissions
- On-going set-up of ICON-ART-CTDAS inversions of CO2 fluxes


2018 annual mean: maps of emissions & country scale budgets


Task 4.5: Guidance & synthesis of the local and regional estimates

Synthesis of WP4, confronting results from local & national scale inversions

- Perspective on the use of high res model for local scale inversions from T4.1-3
- Reconciliating instant / local and national estimates: tests cases covered by local inv. (T4.2-3) and gridded national inv. (T4.4) and nested configurations
- Benchmarking test cases and criteria, guidance for the multiscale prototype in WP6 and the development of local, regional or nested systems

Surface CO₂ over France at 10 km res (E. Potier, LSCE)

XCO₂ over the Paris area at 1 km res (Sim by J. Lian; Fig. by A. Danjou, LSCE)

WP4 Deliverables

D4.1 Definition of simulation cases and model systems for building a library of plumes (lead: WU)

D4.2 Assessment of plume model performance (lead: Empa)M24On timeD4.3 Documentation of plume detection and quantification methods
(lead: Empa)M12DoneD4.4 Benchmarking of plume detection and quantification methodsM12Done

D4.4 Benchmarking of plume detection and quantification methods (lead: FMI)

D4.5 Perspectives on the use of atmospheric transport models for local scale inversions (lead: ENPC) M26

D4.6 Intercomparisons of national-scale inversions (lead: MPG) M34

D4.7 Ensemble of estimates for assimilation into prototype (lead: UEDIN) M30

D4.8 Synthesis and recommendations (lead: CEA) M36

M06

M24

Done

Delay 1-2 Mt

In prep.

- Finalization of the main activities at local scale: tasks 4.1 and 4.2 and D4.5 (based on results from task 4.3)
- T4.4 national scale inversions: Including co-emitted species in inversions of CO2 fluxes, experiments with pseudo CO2M data, sensitivity tests and intercomparisons
- Sending results from T4.4 national scale inversions for assimilation into multiscale prototype in WP6 (D4.7)
- Analysis with T4.3 / T4.4 nested national to city scale configurations to feed the synthesis in T4.5 (D4.8)

Synthesis

 Regular and fruitful meetings at WP and task levels sine the beginning of the project: will be maintained