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WP4 - A large team effort
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National scaleLocal scale – Point sources and Cities

T4.2 Local inversion approaches for efficient 
processing of plume images with a large spatial 

and temporal coverage
FMI, CEA, EMPA

T4.4 National scale inversions
DLR, UEDIN, TNO, DWD, EMPA, CEA, ENPC, VUA, 

FMI, ULUND, ECMWF, AGH

T4.5 Guidance and synthesis between the local 
and regional scale estimates

CEA + all

T4.1 Local scale model performance assessment 
and improvement

EMPA, WU, CEA,VUA, MPG, FMI, TNO, DWD, 
ENPC, ECMWF

T4.3 Local inversion approaches using 
atmospheric transport models

ENPC, CEA, iLab, WU, UEDIN, FMI, VUA, AGH

Overview WP4
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Task 4.1. Local scale models: performance assessment & improvement
D4.2: Assessment of plume model performance, due Dec 2022

ID Description Time period Available observations Modeled with
BEL Power plant 

Bełchatów, Poland
6-7 Jun 2018 In-situ observations (CO2) and remotely 

sensed observations (XCO2) from three 
aircraft; TROPOMI NO2

COSMO-GHG, 
ICON-ART,
LOTOS-EUROS, 
MicroHH

JAE Power plant 
Jänschwalde, Germany

22-23 May 2018 In-situ observations (CO2) and remotely 
sensed observations (XCO2) from two 
aircraft; TROPOMI NO2

COSMO-GHG, 
ICON-ART,
LOTOS-EUROS, 
MicroHH

LIP Steel plant 
Lipetsk, Russia

12-13 Jun 2019 TROPOMI CO COSMO-GHG,
MicroHH

MAT Power plant 
Matimba, South Africa

24-25 Jul 2020 TROPOMI NO2 COSMO-GHG, 
MicroHH

BER Berlin
urban area, Germany

18-27 Jul 2018 In-situ observations (CO2) from one 
aircraft; TROPOMI NO2.

COSMO-GHG, 
LOTOS-EUROS

PAR Paris
urban area, France

1-8 Aug 2018 Seven high-precision stationary CO2
measuring stations; TROPOMI NO2

COSMO-GHG, 
WRF-CHEM

NL Randstad area
Netherlands

16-23 Jun 2018
16-23 Dec 2018

One high-precision stationary CO2
measuring station; 43 stationary NO2
measuring stations; TROPOMI NO2

LOTOS-EUROS

Overview of plume simulations
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Task 4.1. Local scale models: performance assessment & improvement
Example 1: Power plant Belchatow,  Poland, 7 Jun 2018

Column XCO2 at different day times Comparison with aircraft in-situ CO2
(COMET campaign, courtesy DLR)
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Task 4.1. Local scale models: performance assessment & improvement
Example 2: City of Paris, 1-10 Aug 2018

TROPOMI
NO2
1-8 Aug

tower
in-situ 
CO2
1-9 Aug

COSMO-GHG WRF-CHEM

COSMO-GHG

TROPOMI

COSMO-GHG

TROPOMI

COSMO-GHG

TROPOMI

COSMO-GHG

TROPOMI

COSMO-GHG

TROPOMI

COSMO-GHG

TROPOMI

COSMO-GHG

TROPOMI

COSMO-GHG
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Task 4.1. Local scale models: performance assessment & improvement
Simplified chemistry simulations with MicroHH (M. Krol, WUR)

Snapshot of simulation at 25 m resolution

NO2

OH

22 May 2018

Comparison with TROPOMI

NO, NO2, NOx and CO2 along plume
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Task 4.1. Local scale models: performance assessment & improvement

https://vimeo.com/channels/microhh/768081104

Plume rise simulations for Jänschwalde with MicroHH (B. van Stratum, WUR)
Early morning 06:00

CO2M overpass time 11:30

Explicit plume rise

Fixed release height

Explicit plume rise

Fixed release height

Comparison with aircraft in-situ CO2 observations

https://vimeo.com/channels/microhh/768081104
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Task 4.2: Light plume detection & quantification methods

Methods tested
• EMPA: Cross Sectional (CS)
• EMPA: Gaussian Plume (GP) 
• EMPA: Integrated Mass Enhancement (IME)
• LSCE: Light Cross Sectional (LCS)
• FMI: Divergence (DIV)

Benchmarking data and configurations
• Synthetic CO2M observations of XCO2 and NO2from SMARTCARB 
• 2 periods: full year 2015,  3 months May - Jul
• 2 cloud conditions: With and without
• 2 auxiliary tracer cases: With and without NO2
• 2 wind fields: COSMO and ERA5 winds

Further tests with real TROPOMI observations 
and simulated plumes from Task 4.1

Example of plume detection

Technical details
• All methods implemented in python package ddeq

https://gitlab.com/empa503/remote-sensing/ddeq
• Data on ICOS fileshare https://fileshare.icos-cp.eu
• Analysis with jupyter notebooks at ICOS-CP

D4.4: Benchmarking of plume detection and quantification methods, due Dec 2022

https://gitlab.com/empa503/remote-sensing/ddeq
https://fileshare.icos-cp.eu/
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Task 4.2: Light plume detection & quantification methods
Beirle’s divergence method applied to XCO2 observations
(Hakkarainen et al., Frontiers in Remote Sensing, 2022)
Flux divergence equals sum of emissions E and sinks S: 

V = vertical column density from satellite
u, v = horizontal wind components, e.g. from ERA5

Method works well for NOx

Additional challenges for CO2:
• Much lower signal:noise, 

denoising necessary
• High background levels need

to be subtracted before
applying method

• Biospheric fluxes
• Strict cloud filtering needed

Divergence maps for NOx and CO2
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Task 4.2: Light plume detection & quantification methods
Impact of clouds: Compare benchmark results btw. cases A1 (no clouds) and A2 (cloud threshold)

Integrated Mass
Enhancement - Empa

Cross-sectional
flux - Empa

Gaussian plume
matching - Empa

Light cross-sectional
flux - LSCE
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Task 4.2: Light plume detection & quantification methods
Impact of quality filtering for poor plume detection & quantification cases
-> Tradeoff between number of estimates and quality of results

Results from light
cross-sectional flux
method of LSCE for
case A1 (no clouds)

less strict quality filtering
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Snapshot Area Map (SAM) 
of XCO2 over Mexico by 

OCO-3 and comparison to 
TROPOMI NO2 (source: JPL)

• Objective: develop approaches using info from high resolution models to detect & 
invert plumes in XCO2 images

• estimates of the sources (industrial sites, cities) in complex situations where 
the light approaches (T4.2) face limitations

→ insights on spatial & sectoral distribution of emissions in cities

Task 4.3: Local inversions using atmospheric transport models

Overcoming uncertainties in 
transport model

New metrics for comp of 
model vs observed plume Tests on pseudo images of 

XCO2 plumes from Paris, 
Berlin and power plants

CEREA
Using CNN trained on model to 
detect & invert plumes

Potential of the co-
assimilation of CO or NO2 

images for cities

Analysing CO/CO2 & NO2/CO2 
ratios over urban areas

Global analysis of TROPOMI 
NO2/CO & OCO-2/3 XCO2 UEdin

Inferring spatial & sectoral 
distribution of city emissions

Optimizing city-scale 
inversion configurations

Assessing their robustness

Propagation of uncertainties 
with a HR DA system

CCFFDAS assimilating XCO2 
and NO2 images over Berlin iLab

Tests with pseudo images from 
LES model EnKF over the Randstad area VUA

Tests with real measurements Analytical inv. over Krakow AGH

T4.3.1

T4.3.2
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Development and results

New metrics

Baseline L2 metric (dl2):
• (+) Easy to compute.
• (-) double penality issue.

New local metric (dF ) freed from position error:
• (+) Keep L2 formalism while addressing double penalty issue.
• (-) Add a local minimisation process.

Non-local Wasserstein metric (w):
• (+) Separation of the errors sources.
• (-) Loose of the scale information.

Non-local Hellinger metric (wF ):
• (+) Cheap and freed of position error.
• (-) Ground on Gaussian pu� assumption.

Vanderbecken P.J. Non-local metrics for Sentinel product 2022-09-29 4 / 8

Development and results

Evaluate the best matching plume

Who is the best or the worst according to a specific metric:

Vanderbecken P.J. Non-local metrics for Sentinel product 2022-09-29 8 / 8

Subtask 4.3.1: New inversion methods

Non local evaluation metrics to compare modelled and 
observed plumes which does not penalize isometries
Vanderbecken et al., 2022, AMTD

Testing four metrics
Best and worst fit to observed plumes among a set of 
modelled plumes as a function of the metric
Test on simulations from E. Potier (LSCE)

Traditional L2
L2 with 

correction of 
plume position

Wasserstein
Wasserstein with 

correction of 
plume position
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Subtask 4.3.1: New inversion methods
Plume segmentation and inversions based on Convolutional Neural Networks

1 x 160 x 160

16x80x80

56 x 56 x 256

32x40x40 128x10x10

convolutional + eLU

max pooling

Encoder part

64x20x20 128x10x10 64x20x20 32x40x40 16x80x80

1 x 160 x 160

Conv2DTranspose

Dropout

Decoder part

Skip connections

Input image Output image

Figure 5. The XCO2 field/plume pairs are fed into a U-Net that learns to distinguish the spatial features of the plume from the background.

million parameters are used. The encoder used is the EfficientNetB0 CNN architecture (Tan and Le, 2020) which is built with

specific convolution layers (based on depth-wise convolutions) and a squeeze-and-excitation optimisation. Several encoders215

have been considered and tested: ResNet (He et al., 2015), DenseNet (Huang et al., 2018) and self-made alternatives. The

decoder phase is a repetition of convolution and upsampling layers.

A dropout rate of 0.2 is used in the encoder part. The activation layers in the encoder part are swish functions (Ramachandran

et al., 2017), whereas relu functions are chosen for the decoder part. The normal kernels are chosen to initialise convolutional

layers to avoid vanishing or exploding gradients during the first epochs. To get a probability map, the final output is activated220

by a sigmoid function. We use an initial learning rate of 10�3 with Adam optimiser and a reduce on plateau strategy after

considering different configurations. The batch size is set to 32 samples, and the number of epochs is set to 500 which ensures

the convergence of learning. The final model weights are the best performing weights on the validation dataset.

3.4 Training, validation, and test datasets

The complete dataset is divided into training, validation and test subsets. Since a plume at a certain time strongly resembles the225

plume of the next hour, the validation and test sets consist of subsets of plumes on two consecutive days. For a given month, the

test dataset always consists of the plumes of the 4th, 5th, 15th, 16th days of the month. The training, validation and test datasets

are used to train the model, to tune its hyperpameter and to test the optimal model, respectively.

11

Plume segmentation: U-Net algorithm fed with pairs 
of XCO2 full fields and plume mask 

• Tests on XCO2 pseudo-images
→ modeled with WRF-Chem around Paris (LSCE/Suez Origins)
→ modeled with COSMO-GHG around Berlin & Power Plants in Germany (SMARTCARB project / EMPA)

Examples of XCO2 field simulationJ. Dumont Le Brazidec / CEREA
Target plume + background + instr. noise
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Subtask 4.3.1: New inversion methods

Plume segmentation based on 
Convolutional Neural Networks
Dumont Le Brazidec et al., 2022, submitted to GMD

2CoCO2 – Prototype system for a Copernicus CO
2
 service

Segmentation: plume cluster to plume cluster

Deep learning algorithm
* trained on all training images
* tested on plume cluster images 
centred at Boxberg PP

Only XCO2 used, with simulated 
satellite noise

Each row represents a quartile 
(in terms of performance) from 
best to worst

Almost all segmentations are 
accurate

Training and tests on images of the cluster 
of PP plumes around Boxberg
Rows = quartiles of performances from best to worst: the 
performance is based on a weighting of the plume mask
by the plume concentration

→ Ability to handle overlapping plumes

Pseudo XCO2 
image

Targeted 
plume

Segmentation: 
CNN

Segmentation: 
threshold  test (T4.2)
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Subtask 4.3.1: New inversion methods

Plume segmentation based on 
Convolutional Neural Networks

Training on images over Paris + PP and 
tests on images of the plume from Berlin
Rows = quartiles of performances from best to worst: the 
performance is based on a weighting of the plume mask
by the plume concentration

• performances close to those when training 
the CNN with images from Berlin

→ towards a “universal” algorithm trained 
with a limited set of simulations to cover 
wide sets of sources: from high to low 
cost method

• Now investigating the use of NO2 images 
to support the XCO2 plume segmentation 
(1st results promising)

Dumont Le Brazidec et al., 2022, submitted to GMD

4CoCO2 – Prototype system for a Copernicus CO
2
 service

Segmentation: PP+Paris to Berlin

Deep learning algorithm
* trained on all training images except for 
Berlin region
* tested on Berlin images

Only XCO2 used, with simulated satellite noise

Each row represents a quartile (in terms of 
performance) from best to worst

75% very accurate to accurate segmentations

As expected, slight decline (but not big) in 
performance when trained and tested in two 
different regions

Pseudo XCO2 image Targeted plume Segmentation: CNN
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• Estimates of the total emissions from the source
• Until recently, encouraging results when training the CNN with sets of images including the targeted source 

• Recent progresses and perspectives adding, in input:
→ the CNN-based segmentation results
→ the NO2 images

Subtask 4.3.1: New inversion methods

Plume inversion based on Convolutional Neural Networks

Inversion results corresponding to
relative errors on hourly emission
from Berlin when using a CNN
trained with XCO2 images on Berlin.
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Subtask 4.3.2: Spatial resolution of the city emissions

Sensitivity to control vector & ability to solve for
the spatial distribution of emissions within cities
Analysis with the CCFFDAS over Berlin

CCFFDAS over Berlin

Results on March 2 2008 for sectors other than power plants

Kaminski et al., 2022, Front. Remote Sens.

→ Ability to solve for the emission of individual districts in Berlin when using both XCO2 and NO2 images
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Task 4.4: National scale inversions 

• Mainly for EU countries, especially for
Germany, France, the Netherlands and the UK

→ CO2 but also CH4 inversions
→ using pseudo (incl. CO2M)/real in situ/satellite

CO2/co-emitted species data for CoCO2 ref
years (2018, 2021)

• Objective of the intercomparisons:
→ Evaluating standard (fed by WP2-7) and

country specific configs, obs networks (impact
of CO2M) and methods

→ Assessing their complementarities
• Feeding WP6 & WP8: estimates for GST1 and

for assimilation into prototype & supporting
developments of national systems

→ Protocol
→ All WP2-WP7 required input available except

CO2M pseudo data (coming soon)

Initial commitments 

CH4 simulations at DWD
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CO2 inversions with pseudo-data 
at ULUND

5 km – 1 km – 200 m nested 
configuration at AGH
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Task 4.4: National scale inversions 
Inversions of anthropogenic and natural CO2 fluxes in France using in situ CO2 data 
E. Potier / LSCE

• Inversions with variational mode of Community Inversion
Framework (CIF) + 10 km res CHIMERE with adjoint

• Control of the NEE at 10 km / 6-h res and of the anthropogenic
at the scale of admin regions and 1 day

• Tests of sensitivity to prior estimates of the NEE fluxes and
anthropogenic emissions

→ consistency of the maps and budgets of inverted NEE

10 km resolution maps of NEE in Feb 2018
when using VPRM as prior estimate of the NEENEE budget for France in July 2018

Hatched bars: prior estimates
Plain bars: inversions

Observed vs modelled CO2 at Trainou
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Task 4.4: National scale inversions 

Results for Jan, March and May

Inversions of anthropogenic and natural CO2 fluxes in France using in situ CO2 data 
E. Potier / LSCE

• Lack of sensitivity and thus
correction to anthropogenic
emission estimates

10 km resolution maps of the 
anthropogenic CO2 emissions in Feb 2018
when using TNO as prior estimate of the emissions

• Next tests include the assimilation
of OCO-2 XCO2 data

OCO-2 CHIMERE

Observed and simulated OCO-2 
XCO2 data in July 2018
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• Inversions based on EnKF (100 members) and GEOS-Chem model (0.25°x0.3°)
• Separate control of natural and anthropogenic fluxes
• Current tests assimilating in situ CO2 and satellite (OCO-2) XCO2 separately

Task 4.4: National scale inversions 
Inversions of anthropogenic and natural CO2 fluxes in Europe using CO2 / XCO2 data
T. Scarpelli / UEdin

Prior
In-situ
SatelliteIn-situ Satellite (OCO-2)

National CO2 fluxes 
for 2018 (Tg)

CO2 NEE for 2018

Prior (VPRM)
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Task 4.4: National scale inversions 
Inversions of anthropogenic and natural CO2 fluxes in Europe using CO2 / XCO2 data
T. Scarpelli / UEdin

In-situ Satellite (OCO-2)

• Lack of correction to anthropogenic emissions
→ Need for co-emitted species
→ On-going experiments with co-assimilation of satellite CO data

Prior
In-situ
Satellite

National CO2 
combustion 

emissions in 2018 (Tg)

CO2 anthropogenic emissions in 2018

Prior (TNO)
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Task 4.4: National scale inversions 
Estimation of European CH4 emissions
M. Steiner / EMPA

2018 annual mean: maps of emissions & country scale budgets

• Inversions based on ICON-ART-CTDAS (Ensemble Kalman Smoother)
• Separate control of anthropogenic and natural emissions
• On-going set-up of ICON-ART-CTDAS inversions of CO2 fluxes
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Intérêt de l’estimation des émissions urbaines avec des données satellitaires

Principe de l’inversion

Figure 3 – Principe de l’inversion

Alexandre DANJOU (LSCE) Émissions de CO2 estimées par données satellitaires sur les villes à forte croissance démographique 13/12/2022 6 / 34

Task 4.5: Guidance & synthesis of the local and regional estimates

Synthesis of WP4, confronting results from local & national scale inversions

• Perspective on the use of high res model for local scale inversions from T4.1-3

• Reconciliating instant / local and national estimates: tests cases covered by 
local inv. (T4.2-3) and gridded national inv. (T4.4) and nested configurations

• Benchmarking test cases and criteria, guidance for the multiscale prototype in 
WP6 and the development of local, regional or nested systems

XCO2 over the Paris area at 
1 km res (Sim by J. Lian; Fig. by A. 

Danjou, LSCE)

Surface CO2 over France at
10 km res (E. Potier, LSCE)

5 km – 1 km – 200 m 
nested configuration 

at AGH

Nested 
configuration 
at VUA
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D4.1 Definition of simulation cases and model systems for building a 
library of plumes (lead: WU) M06 Done

D4.2 Assessment of plume model performance (lead: Empa) M24 On time

D4.3 Documentation of plume detection and quantification methods 
(lead: Empa) M12 Done

D4.4 Benchmarking of plume detection and quantification methods 
(lead: FMI) M24 Delay 1-2 Mt

D4.5 Perspectives on the use of atmospheric transport models for local 
scale inversions (lead: ENPC) M26 In prep.

D4.6 Intercomparisons of national-scale inversions (lead: MPG) M34

D4.7 Ensemble of estimates for assimilation into prototype (lead: UEDIN) M30

D4.8 Synthesis and recommendations (lead: CEA) M36

WP4 Deliverables
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Perspectives for the final year

• Finalization of the main activities at local scale: tasks 4.1 and 4.2 and D4.5 
(based on results from task 4.3)

• T4.4 national scale inversions: Including co-emitted species in inversions of 
CO2 fluxes, experiments with pseudo CO2M data, sensitivity tests and inter-
comparisons

• Sending results from T4.4 national scale inversions for assimilation into multi-
scale prototype in WP6 (D4.7)

• Analysis with T4.3 / T4.4 nested national to city scale configurations to feed the 
synthesis in T4.5 (D4.8)

• Synthesis

• Regular and fruitful meetings at WP and task levels sine the beginning of the 
project: will be maintained


