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1 Executive Summary 

This document illustrates a family of approaches to quantify CO2 and NO2 emissions from 
point sources using CO2 and NO2 images retrieved from the upcoming Copernicus Carbon 
Dioxide Monitoring (CO2M) satellite constellation, in an automatic and lightweight fashion (i.e., 
without requiring atmospheric transport simulations, and being computationally cheap to apply 
globally). The Background section covers the scope and materials used for this report in more 
detail. The Plume detection and quantification methods section describes promising methods 
from the literature in more detail, which either work on images from a single satellite overpass, 
or on the temporal average of multiple overpasses of a single source. The section Potential 
issues and suggested solutions discusses a number of identified issues that can hinder the 
detection or quantification steps of these algorithms, as well as steps to mitigate these 
problems (if possible). Significant issues that are addressed at this stage are overcoming low 
signal-to-noise ratios and obtaining more accurate estimates of the wind speed and direction. 
Issues that are harder to overcome are the low annual number of expected plume detections 
for a given source, and providing good estimates of the background fields necessary to 
determine the plume enhancements. The approaches described here have been tested on a 
limited set of synthetic data but will be applied to a larger library of plumes developed within 
task 4.1, which in turn will be described in Deliverable 4.2. We would like to point out that this 
document only describes the various methods, while an evaluation of the performance of the 
different methods will be provided in Deliverable 4.4. 

 

2 Introduction 

2.1 Background 

 Context of this report 

To support the ambition of national and EU legislators to substantially lower greenhouse gas 
(GHG) emissions as ratified in the Paris Agreement on Climate Change, an observation-based 
"top-down" GHG monitoring system is needed to complement and support the legally binding 
"bottom-up" reporting in national inventories. For this purpose, the European Commission is 
establishing an operational anthropogenic GHG emissions Monitoring and Verification 
Support (MVS) capacity as part of its Copernicus Earth observation programme. For the MVS 
system to relevantly support policy implementations, it must have the following four capabilities 
(cf. the EU report by Pinty et al., 2017): (1) detection of emitting hot spots such as megacities 
or power plants, (2) monitoring the hot spot emissions to assess emission reductions of the 
activities, (3) assessing emission changes against local reduction targets to monitor impacts 
of the nationally determined contributions, (4) assessing the national emissions and changes 
in 5-year time steps to estimate the global stock take. A constellation of two to three CO2, NO2, 
and CH4 monitoring satellites (CO2M) will be at the core of this MVS system. The satellites, 
to be launched in 2025, will provide imaging of CO2, NO2, and CH4 at a resolution of about 2 
km × 2 km along a 250-km wide swath. This will not only allow the large-scale distribution of 
the two most important GHGs (CO2 and CH4) to be observed, but will also capture the plumes 
of individual large point sources and cities. The CoCO2 project was established to develop 
prototype methods that can realize the four envisioned capabilities for the MVS system based 

on the satellite images. 

In Work Package 4.2 of the CoCO2 project, methods are investigated to quantify CO2 
emissions from large point sources and megacities using images of their plumes collected by 
the future CO2M satellite constellation, in line with the MVS capability steps 1, 2, and 3 as 
outlined above. The methods are supposed to be lightweight, i.e., they should not require too 
large computing resources. It is expected that there are around 900 strong point sources with 
emissions higher than 3.5 Mt CO2/year, and 150 to 300 cities worldwide that produce emission 
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plumes large enough to be observed by a CO2M constellation of three satellites about 50 
times per year (Wang et al, 2019; Kuhlmann et al., 2021). If atmospheric transport models 
were used to provide constraints on the estimated emissions for all the images of all individual 
point sources and cities (e.g., Broquet et al., 2018; Wu et al., 2018; Ye et al., 2020; Lei et al., 
2021), up to 60 000 plume-resolving simulations would be required every year (an average of 
about 7 per hour), which is a challenging computational requirement. Instead, the lightweight 
methods considered in this document are not based on atmospheric transport models. Rather, 
they take a data-driven approach based on direct observation of signals in the satellite images 
themselves, and at best use simplified assumptions of plume physics and dynamics along with 
an estimate of the wind field. As a result, the methods presented here can be applied to large 
power plants and megacities only. We remark that efforts using atmospheric transport models 

for localized inversions are undertaken in CoCO2 Work Packages 4.3, 5.3, and 6.  

 

 Satellite measurements & SMARTCARB dataset 

The CO2M mission is an upcoming constellation of at least two satellites flying in a sun-
synchronous low-Earth orbit with equator crossing times around 11:30 local time. CO2 and 

NO2 images will be recorded at a resolution of about 2×2 km2, with a 250 km swath. The CO2 
observations will have a precision (1-sigma) of 0.7 ppm or better for a vegetation scenario at 
a solar zenith angle (SZA) of 50 degrees (VEG50 scenario) and a systematic error smaller 
than 0.5 ppm. The NO2 observations will have a precision (1-sigma) of 1.5×1015 molecules 

cm-2 or better (CO2M MRD v3: Earth and Mission Science Division, 2021). 

Synthetic CO2M observations to illustrate the potential and challenges of the type of 
approaches described in this report are available from an Observing System Simulation 
Experiment (OSSE) from high-resolution atmospheric transport simulations with the COSMO-
GHG model for a domain covering eastern Germany, Poland, and parts of the Czech Republic. 
The dataset was created for the year 2015 in the SMARTCARB project (Brunner et al., 2019; 
Kuhlmann et al., 2019), and is publicly available from https://doi.org/10.5281/zenodo.4048227. 

 

2.2 Scope of this deliverable 

 Objectives of this deliverable 

The objective of this report is to document promising plume detection and quantification 
methods, based on existing methods found in the literature, demonstrating their potential, and 
identifying possible improvements. Promising "candidate methods" will be further developed 
and evaluated in Task 4.2 and documented in the upcoming Deliverable 4.4, both with respect 
to their ability to quantify emissions accurately and their potential to be applied operationally 
in a future MVS system.  

 

 Work performed in this deliverable 

This report is based on plume detection and quantification methods identified in the literature. 
Additional work performed in this deliverable involved testing two promising approaches for 
plume detection and quantification, highlighting possible strengths and deficiencies, and 
identifying areas that may require improvement. 

 

 Deviations and counter measures 

None. 
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3 Review of plume detection and quantification methods 

Two families of approaches for plume detection and quantification were identified in the 
literature and reviewed. The first type of approach applies to "instantaneous plumes", obtained 
from single satellite overpasses. We describe three possible plume detection methods for such 
cases, and four different applicable emission quantification methods. The second family of 
approaches considers the temporal average of plume fluxes as estimated from multiple 
images taken at different times. We describe a single plume detection and quantification 
method for this type of approach. 

The family of approaches described below can be used to detect plumes from yet unknown 
point sources (in an exploratory manner). Detecting unknown point sources is more relevant 
for methane than CO2, so is not the focus of this report. Instead, the primary envisioned use 
case for these methods is to systematically apply them to the CO2M images to detect and 

process all plumes related to known large point sources and cities. 

 

3.1 Plume detection & quantification for instantaneous plume interpretation 

 Plume detection 

3.1.1.1 Using a convolutional neural network 

Emission plumes in satellite images are CO2 or NO2 enhancements over a background field 
due to CO2 or NOx emissions from cities, power plants, or other facilities. One way to detect 
(learn the presence, position, and boundaries of) CO2 plumes is based on supervised machine 
learning methods that fall within the field of remote sensing image detection (Lary et al. 2016; 
Maxwell et al. 2018), which solve this task with convolutional neural networks.  

A natural first step in plume identification is the construction of a plume presence detection 
algorithm. A dataset comprising a representative set of so-called "positive" images (with the 
presence of a plume) and so-called "negative" images (without the presence of a plume) is 
used as input to a binary convolutional neural network classifier. Such a neural network then 
learns to recognise the characteristics of an image with a plume, and its presence. This work 
was done for example with TROPOMI satellite images for NO2 plumes by Finch et al. (2021), 
or for power plant smoke plumes by Mommert et al. (2020). To enhance and help the neural 
network learn the characteristics of a field, additional input data can be used to feed the 

algorithm, such as meteorological or dynamical information. 

A second step in plume identification is the construction of a plume contour, which can be 
done in several ways. A first method is to build an algorithm based on the plume presence 
algorithm (Finch et al. 2021). This method has the advantage of relying solely on the use of a 
cheap labelling that indicates whether an image is positive or not. An alternative method is to 
directly use a segmentation algorithm such as a U-Net style neural network (Ronneberger et 
al. 2015) which has already proven effective for other types of data such as detecting power 
plant smoke plumes (Mommert et al., 2020). However, using a convolutional neural network 
relies on the use of labelled segmented images (as the neural network must be trained on 
images which contain the segmentation mask of the plume) which can be very difficult to 
obtain, and/or which requires a lot of manual work to generate. 

 

3.1.1.2 Using image thresholding and segmentation 

An alternative to the plume detection with a neural network described in the previous section 
is to identify the plumes using image thresholding and segmentation, as described below. 

3.1.1.2.1 Forming a plume pixel mask 

The first step in the detection of plumes in this approach is the generation of a 'mask' that 
indicates whether a pixel value is likely enhanced over the background or not. We denote a 
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satellite image as 𝐼(𝑖, 𝑗), considering it a 2-D array of pixel values indexed at positions (𝑖, 𝑗). 
The mask 𝑀(𝑖, 𝑗) indicates whether a value is likely enhanced or not. It can be constructed as 

𝑀(𝑖, 𝑗) = {
True ,

𝐹𝑠[𝐼](𝑖, 𝑗) − 𝐹𝑏[𝐼](𝑖, 𝑗)

𝑁(𝑖, 𝑗)
> 𝑧0,

False, otherwise,

 

where 𝐹𝑠 is an operator enhancing the plume signal (e.g., a Gaussian filter which denoises the 
signal), 𝐹𝑏 an operator that suppresses the signal but extracts the background field (e.g., a 

median filter), 𝑁 is some scaling factor to suppress noisy signals (e.g., related to the quality of 
the data), and 𝑧𝑜 represents a cut-off value beyond which we consider a pixel to be more likely 

to be in the plume than not. The masking test can be carried out on small 5 × 5 patches of 
pixels compared to a background, such that 𝑧0 can be a test-statistic taken from Student's t-
test (Varon et al., 2018), or by comparing individual samples to the background mean, such 
that 𝑧0 may be taken from a one-sample z-test instead (Kuhlmann et al., 2019). The value for 
𝑧0 corresponds to a one-sided confidence level of, e.g., 0.99, that is, a likelihood of 99% or 

more that a pixel with that value does not come from the same distribution as the background. 

Variation between these thresholding-based plume detection methods generally comes from 
the exact definition of the plume-enhancing and background-extracting operators 𝐹𝑠 and 𝐹𝑏. 
These operators are not necessarily linear operators, and may include chaining together 
separate operations (e.g., a Gaussian smoother followed by a median filter). 

In Varon et al. (2018), the signal-coherency-enhancing operator 𝐹𝑠 is applied not on the input 
fields but on the output mask, by smoothing and median-filtering the formed mask (see Figure 
1). However, it is preferable to apply the smoothing first for a simple reason: consider a 
recorded pixel 𝐼(𝑖, 𝑗) that is lower than its true value due to noise. It may then, erroneously, 
"fail" the statistical test, and this not be taken into account when applying smoothing on the 
output mask. Conversely, by first applying a sufficient denoising step, the pixel may correctly 
"pass" the statistical test, and no smoothing of the output would be required anymore. In this 
way, the spatial extent of the plume is primarily constrained by the available data, and not by 

a post-processing filter. 

 

Figure 1: Example of a plume segmentation procedure from Varon et al. (2018). A test of the 
signal enhancement over the background is performed, and only pixels signficantly enhanced 
over the background mean are kept. 

An advantage of the CO2M mission is that it also provides NO2 observations. Since NO2 is 
co-emitted with CO2 in the case of high-temperature combustion of fossil and other fuels, these 
observations are already in widespread use for detecting co-located CO2 and NO2 emission 
plumes and their shape (e.g., Reuter et al, 2019; Hakkarainen et al., 2021). The NO2 signal is 
generally easier to detect with current systems due to the better signal-to-noise ratio and lower 
background values as compared with CO2. Since the launch of TROPOMI/Sentinel 5P (S5P) 
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in 2017, it has been possible to observe individual NO2 emission plumes from single satellite 
overpasses. For the future CO2M mission, it is expected that a plume will be at least twice as 
likely to be detected in an NO2 image compared to its counterpart CO2 image due to better 
signal-to-noise properties and less adverse effects due to cloud cover (Kuhlmann et al., 2019). 
The NO2 images form a good complement because they are an excellent tracer for CO2 from 
anthropogenic high-temperature combustion emissions and, in contrast to CO2, are hardly 
affected by biospheric fluxes. An important consequence is that the plume mask can thus be 
formed based on the NO2 image alone, which can be used for quantification in both the NO2 
and CO2 plumes at a later stage.  

 

3.1.1.2.2 Segmenting and assigning sources to plumes 

 

Figure 2: Example of plume segmentation and assignment from Kuhlmann et al. (2019). Panel 
(a) shows an idealized scenario of two plumes by coloring corresponding pixels blue or red. 
Panel (b) shows a hypothetical plume mask 𝑴(𝒊, 𝒋) formed based on a possible noisy realization 
of this plume scenario. Panel (c) shows how laterally and diagonally connected pixels are 
assigned a label, restarting each time for a new pixel body. Panel (d) shows how a know source 
location is used (indicated with the blue arrow and circle around it) to assign plume pixels to a 
source, only if the source is connected to the plume pixels. 

Once the plume mask 𝑀(𝑖, 𝑗) is in place, one needs to assign pixels to specific plumes. For 
this purpose, the plumes are segmented (i.e., the image is partitioned into sets of pixels that 
are connected laterally or diagonally, to form connected plume bodies). Once this process is 
complete, a list of known locations for point or area sources can be used to determine which 
plume can be assigned to which source. A schematic example of this procedure is shown in 
Figure 2. Note that detected plumes, which are not connected to a known source location, are 
discarded at this stage. Furthermore, plume bodies that overlap with multiple possible sources 

are currently dismissed; see Section 4.1.3 for more details. 

 

3.1.1.3 Using Gaussian model fitting 

Next to the neural network approach or the image thresholding and segmentation, a final 
method identified in the literature of lightweight plume detection methods is fitting a model of 
an expected plume to the instantaneous images. Figure 3 shows an example of such a method 
with an application to narrow swath observations from the OCO-2 mission. A model of the 
form 



CoCO2 2021  
 

D4.3 Documentation of plume detection and quantification methods 12 

‖ 𝑚𝑥 + 𝑏⏟    
𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑒𝑟𝑚

+
𝐴

𝜎√2𝜋
𝑒
−
(𝑥−𝑥0)

2

2𝜎2

⏟          
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑡𝑒𝑟𝑚

− 𝐼(𝑥, 𝑦)⏟  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

 ‖

2

, 

is fitted to the observations, where 𝑥 here corresponds to the along track distance. By 

obtaining best parameters for 𝑚,𝑏, 𝐴, 𝜎 and 𝑥0 (e.g., in a least-squares error sense), one 
obtains an idealized description of the plume enhancement (the Gaussian term) over the 
background (the linear term). Gaussian plume models (Bovensmann et al, 2010) can be used 
to check whether some of the known emission sources in the vicinity of the measured plume 
transect are likely to have produced the observed signal. A method such as the cross-sectional 
flux method (see next section) can then be used to turn the Gaussian model fit into an emission 
estimate. 

 

Figure 3: Fitting a linear function plus a Gaussian to detect the cross-section of a plume (not 
necessarily perpendicular to the along-plume or wind direction) which can be used together 
with a cross-sectional flux method to estimate emissions at a later point. Figure from Zheng et 
al. (2020). 

 

 Plume quantification 

Once a plume is detected in a satellite image, and the plumes have been assigned to emission 

sources, the next step is to quantify the emission fluxes of the identified plumes. 

3.1.2.1 Background estimation 

In order to estimate the plume emissions, we require the 'column mass enhancement' of the 
plume over the present background field. The enhanced quantity Δ𝐼(𝑖, 𝑗) is extracted from the 

satellite image 𝐼(𝑖, 𝑗) in the generalized form 

Δ𝐼(𝑖, 𝑗) = 𝐺𝑠[𝐼](𝑖, 𝑗) − 𝐺𝑏[𝐼](𝑖, 𝑗), 

where 𝐺𝑠 corresponds to an operator that extracts a denoised estimate of the signal (e.g., a 
Gaussian filter), and 𝐺𝑏 corresponds to an operator that extracts purely the background of the 
signal (e.g., normalized convolution after removing all plume pixels from the images). These 
operators are not necessarily the same as those used in the plume detection steps (referred 
to as 𝐹𝑠 and 𝐹𝑏), where it was important to avoid false negatives (i.e., to avoid not finding a 
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plume where one was present). Here, a higher accuracy is required to accurately estimate the 
background, as an underestimation of the background leads to an overestimation of the 
column mass enhancement, and vice versa (see Section 4.2.2 for more details). Normalized 
convolution and/or median filtering applied to all pixels not masked as plume pixels are two 
viable options. The formulation of more advanced operators that estimate the background 
fields with higher accuracy is still an open research problem.  

 

3.1.2.2 Methods for estimating source rates from plume images 

The following four methods for plume emission estimation were outlined in a review by Varon 
et al. (2018): 

1. Gaussian plume inversion method. This method corresponds to finding a Gaussian 
plume model that best fits the measured plume. Defining the local column 
enhancement over the background as Δ𝐼, we attempt to fit a model of the form  

Δ𝐼(𝑥, 𝑦) =
𝑄

𝑈

𝑒
− 

𝑦2

2𝜎𝑦(𝑥)2

√2𝜋𝜎𝑦(𝑥)
 

to the data, where 𝑄 is the source flux (thus the quantity of interest), 𝑈 the wind speed 

in the downstream direction (denoted with the coordinate 𝑥), and 𝜎𝑦(𝑥) describes the 

horizontal spread of the plume perpendicular to the downstream direction, denoted 
with coordinate 𝑦. The method naturally does not work well for plumes that depart from 
a Gaussian behaviour, e.g., due to turbulence or other departures from steady-state 
conditions. 

2. Source pixel method. This method estimates the source rate by looking merely at the 
pixel enhancement of the source location, not at the downwind part of the plume. Then 

we can compute the source rate 𝑄 in units of kg/s due to a measurement at the plume 
pixel, 

𝑄 =
𝑈𝑊𝑝

𝑔𝐼𝑎
Δ𝐼, 

where 𝑈 is the instantaneous wind speed at the source pixel, 𝑊 represents the pixel 
dimensions, 𝑝 the surface pressure, 𝑔 the gravitational acceleration, 𝐼𝑎 represents the 

column of dry air (kg m-2), and Δ𝐼 represents the local column enhancement over the 
background. The downside of this method is that it ignores a lot of additional 
information from the plume downwind, and it is more vulnerable to noise and 
systematic errors in the estimation of the column mass enhancement than the other 
methods. 

3. Cross-sectional flux method. This method estimates the flux through one (or more) 
plume cross-section(s). The cross-sectional flux is computed as a line integral of the 
column mass enhancement in the direction perpendicular to the plume's long axis (line 
density) multiplied with the effective wind speed. The integration is, for example, 
carried out with a discrete summation over the detectable width of the plume.  

4. Integrated mass enhancement (IME) method. This method estimates the source 
rate based on integrating the total mass of the plume and dividing by the residence 
time of the species within the detectable plume. The latter variable is a function of 
dissipation and turbulent diffusion, for example expressed in terms of an effective wind 
speed and plume size. This method is non-linear and dependent on relationships 
drawn between meteorological circumstances and plume properties, perhaps also on 

the chemical species. 

A major challenge common to all methods is finding an appropriate effective wind-speed for 
the plume, as wind speed may vary in the vertical direction, but the satellite images contain 
integrated column measurements with no meaningful vertical resolution. This challenge is 

discussed in more detail in Section 4.2.3. 
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In the review of Varon et al. (2018), only the cross-sectional flux and integrated mass 
enhancement methods were considered to be viable methods, free of large errors and robust 
against plumes in varying meteorological and noisy conditions (e.g., in presence of instrument 
noise). For the CO2M mission, given the fact that we need global and unbiased emission 
estimates for a large variety of plumes, the cross-sectional flux method appears to be a well-
suited method, except for situations where no clearly identifiable elongated plume evolves due 
to low winds, a complex clustering of sources, or due to specific flow conditions such as in 

basin cities like Los Angeles (e.g., Schwandner et al. 2017).  

A Gaussian plume inversion method remains a possible alternative to the cross-sectional flux 
method, given this Work Package focusses primarily on large plumes which should fit a 
Gaussian shape relatively well. An advantage of the Gaussian plume inversion is that it may 
be better able to deal with overlapping plumes, by simply fitting multiple Gaussian plumes 
based on the known point sources. Examples may be found in Nassar et al. (2017) for small 
satellite swath observations. A general framework for plume inversion using Gaussian plumes 
may be found in Wang et al. (2020). The performance of this method requires more attention. 

Two specific advances in the cross-sectional flux method that can be found in the literature 
are worth highlighting here. The first is that the line density does not have to be computed for 
a (set of) single line(s), but can instead be computed for a set of boxes (Kuhlmann et al., 
2019). By computing the average line density within the boxes, more pixels become available 
in each plume to estimate the line densities. See Figure 4 for an example. The second advance 
is the assumption that the line density in the cross-sectional direction is approximately 
Gaussian (Reuter et al., 2019). This assumption (as in plume quantification method 1 above) 
is not valid for complex sources like cities and small turbulent plumes. On the other hand, it 
allows one to find a best-fitting Gaussian that fits both the CO2 and NO2 data simultaneously 
in terms of the location of the centre and width of the Gaussian as expressed through a 
standard deviation, thus again allowing us to leverage the higher signal-to-noise ratio of 
plumes in the the NO2 data to better interpret the CO2 data. An example of this is also shown 

in Figure 4. 

 

Figure 4: Panel (a) and (b) show examples of detected plumes (black dotted pixels) in the CO2 
and NO2 images, along with cross-sectional boxes (yellow lines) which are used to estimate the 
line densities along the plume. Panel (c) shows the cross-sectional line densities along the 
length of the plume, as estimated from the (noisy) input data. Note how a plume starts out more 
concentrated close to the source, but due to diffusion becomes wider and flatter along the length 
of the plume. Panel (d) shows the estimated emissions along the length of the plume for both 
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CO2 and NO2 data. Note how the NO2 concentration decreases along the plume, as it chemically 
reacts and thus decays, while the CO2 concentration remains constant. Figure from Kuhlmann 
et al. (2021).  

By averaging over the estimated fluxes along the plume length, the average flux due to the 
source may be obtained. Note that for NO2 data, the flux will decrease along the plume axis 
as it is chemically depleted, which must be corrected for. It is also necessary to find a suitable 
NO2 to NOx conversion factor. These steps are not required for CO2 emission estimates. 
Figure 4 shows an example of the described plume quantification applied to the SMARTCARB 

dataset. 

 

3.1.2.3 Temporally averaging the data 

The methods described thus far allow us to quantify emissions (in units of kg/s) for a single 
satellite image. To make statements about emissions over longer periods of time, and to take 
advantage of the detection of a single source in multiple satellite images, one can compute a 
temporal average of the various computed fluxes, taking into account their expected temporal 
variations. An example of this principle is shown in Figure 5 with the SMARTCARB dataset, 
in which plume detection and quantification was carried out for synthetic satellite images for 
two power plants over a period of one year. A periodic low-order C-spline was used to 
approximate the time-varying emissions, shown in red, and to compute the annual mean 
emissions (Kuhlmann et al., 2021). The figure also displays the true emission profile in black, 
which contains a notable weekly and monthly signal that is not well estimated by the individual 
estimates. However, the integral of estimated emissions over a full year comes remarkably 
close to the true emissions. 

 

Figure 5: Time series of estimated CO2 and NOx emissions and CO2:NOx emission ratios at (A) 
Jänschwalde and (B) Mělník for a constellation of three satellites for high-noise CO2 and NO2 
observations. The different coloured markers denote the satellite in the constellation. From 
Kuhlmann et al. (2021). 

To better quantify the uncertainties of the final annual estimate of fluxes, one can approximate 

the standard deviation for the annual average, 𝜎𝑄, as 

𝜎𝑄 = √
1

𝑛
(𝜎𝑞0

2 𝑢2 + 𝜎𝑢
2 (
𝑄𝑒
𝑢
)
2

) + (𝑄𝑎𝑚 + 𝑏)
2 +

𝑠𝑑
2

𝑛
+
𝑠ℎ
2

𝑛
, 
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where 𝑛 represents the number of successful estimates, 𝜎𝑞0 corresponds to the uncertainty of 

the line density estimates, 𝑢 to the wind speed, 𝜎𝑢 the uncertainty of the wind speed, 𝑄𝑒 the 

estimated flux as computed previously, 𝑄𝑎 is the mean annual flux from the bottom-up 
inventory, 𝑚 and 𝑏 are factors to tune the standard error to the emission strength (Kuhlmann 

et al., 2021), 𝑠𝑑 and 𝑠ℎ correspond to the day-to-day and hour-to-hour uncertainties, 
respectively, and 𝑛 corresponds to the number of successful estimates. 

An alternative to the method described above is to fit a prior time profile with prior uncertainties 
and temporal error correlations to the observation-based emission estimates (with their own 
uncertainties). Prior profiles and their uncertainties can, for example, be taken from Crippa et 
al. (2020). 

 ddeq Python package 

To illustrate and test the image thresholding and plume quantification methods described thus 
far, as well as later in this document, we used an implementation of these methods that was 
prepared by Gerrit Kuhlmann in the programming language Python. The implementation is 
accessible under https://gitlab.com/empa503/remote-sensing/ddeq. Project partners are 
invited to contribute to this open source package, e.g. by implementing their plume detection 
or quantification method as an add-on. Practical examples of the application of the package 
are illustrated in a Jupyter notebook accessible in the subfolder "notebooks".  

 

3.2 Plume detection & quantification for time-averaged plume interpretation  

 Theory of the divergence method 

In contrast to CO2, which has a long atmospheric lifetime and large background compared to 
plume signal enhancements, the lifetime of NO2 is very short (only a few hours) and the 
atmospheric background is close to zero. For these reasons, averaging satellite-based NO2 
concentrations over a period of time gives information on the nitrogen oxide (NOx=NO+NO2) 
emission sources. To estimate NOx emissions from averaged NO2 columns, statistical 
methods (i.e., based on multiple spatially co-located observations) are often applied (e.g., 
Fioletov et al., 2015; Beirle et al., 2011, 2019; de Foy et al., 2014). The advantage of these 
statistical methods is that they do not require complex atmospheric model runs, and they 
generally provide more robust emission estimates compared to individual satellite overpasses. 
In addition, these methods have been successfully applied to instruments and locations where 
the individual plumes are not detectable on single images, but the emission signal becomes 
visible when multiple scenes are averaged (e.g., Ialongo et al., 2021). As NOx and CO2 are 
often co-emitted, in some cases it might be advantageous to convert NOx to CO2 emissions 
by using NOx-to-CO2 emission ratios. For example, Hakkarainen et al. (2021) proposed a 
method to obtain source-specific NOx-to-CO2 emission ratios from TROPOMI and OCO-2 
satellite observations. The method was applied to convert satellite-based monthly NOx 
emission estimates to CO2 emissions for the Matimba Power Station in South Africa. However, 
to instead apply direct statistical methods to the satellite CO2 observations to detect 
anthropogenic sources, we define CO2 anomalies as the difference to a certain background 
that accounts for the increasing CO2 levels in the atmosphere and its spatio-temporal 
variability (Hakkarainen et al., 2016, 2019). Due to the scarce coverage of current 
measurements systems, a CO2 emission estimation with statistical methods has not been 
successful at present, although options have been discussed by Hakkarainen et al. (2016) 
and Hill and Nassar (2019). 

Recently, the divergence method (Beirle et al., 2019, 2021) has shown great potential in 
providing robust NOx emission estimates based on satellite observations. The divergence 
method is based on the continuity equation (Jacob, 1999) at the steady state, which says that 
a divergence operator 𝐷 applied to the vector flux field 𝐹 corresponds to the difference 
between emissions 𝐸 and sinks 𝑆: 

https://gitlab.com/empa503/remote-sensing/ddeq
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𝐷[𝐹] = ∇ ⋅ 𝐹 = 𝐸 − 𝑆. 

As discussed by Beirle et al. (2019), the NO2 sink can be calculated from the NO2 image 𝐼 as 

𝑆 = 𝐿𝐼/𝜏, where 𝜏 is the NOx lifetime generally assumed as four hours (as used also in the 
SMARTCARB simulations) and 𝐿 is the constant NOx-to-NO2 ratio (typically assumed as 1.32 
as in Beirle et al., 2011, 2019). In a follow-up paper (Beirle et al., 2021), the sink term was 
neglected due to the uncertainties in the assumed NOx lifetime, and only the divergence 𝐷 
was related to the emissions. Since the lifetime of CO2 is extremely long as compared to NOx, 
the sink term can be neglected also for CO2. 

If we apply a temporal averaging operator 𝐴 to the above relation, we can compute the 

temporal average of the emissions, while thus neglecting the sink term, 

𝐴[𝐷[𝐹(𝑡)]] ≈ 𝐴[𝐸], 

where 𝐹(𝑡) corresponds to a flux field for specific times, over which the operator 𝐴 sums. 

In practice, for calculating the fluxes, wind information from a meteorological data assimilation 
product should be used. For the analysis presented in the following, we used the wind 
information from the European Centre for Medium-Range Weather Forecasts (ECMWF) next-
generation reanalysis ERA5 dataset (Hershbach and Dee, 2017; Hoffmann et al., 2019) given 
at 0.1∘ × 0.1∘ grid size resolution and hourly temporal resolution. Following the approach by 
Fioletov et al. (2015), we used the mean value from 900, 950 and 1000 hPa layers. An 
alternative could be to use the ERA5 output at the model layers. For each data point, we take 
the closest point from the wind grid and then temporally interpolate the wind values to the 
measurement time. The flux 𝐹 is defined as  

𝐹(𝑡) = (
𝐹𝑥(𝑡)

𝐹𝑦(𝑡)
) = (

Δ𝐼(𝑡)𝑢(𝑡)

Δ𝐼(𝑡)𝑣(𝑡)
), 

where Δ𝐼 is the vertical column enhancement over the background at a specific time 𝑡, and 
where 𝑢 and 𝑣 are the eastward and northward winds, respectively. We then regrid 𝐹𝑥 and 𝐹𝑦 

to a 0.05∘ × 0.05∘ resolution, and compute the divergence field 𝐷[𝐹(𝑡)] =
𝜕𝐹𝑥(𝑡)

𝜕𝑥
+
𝜕𝐹𝑦(𝑡)

𝜕𝑦
≈ 𝐸(𝑡). 

The average emissions are finally computed from averaging all available divergence 

computations, 𝐴[𝐷[𝐹(𝑡)]] = 𝐴[𝐸(𝑡)]. The partial derivatives are calculated using a second-
order accurate central finite difference approximation, e.g., 

𝜕𝐹𝑥
𝜕𝑥
|
𝑖,𝑗
≈
𝐹(𝑖 + 1, 𝑗) − 𝐹(𝑖 − 1, 𝑗)

𝑥(𝑖 + 1, 𝑗) − 𝑥(𝑖 − 1, 𝑗)
, 

where 𝑥(𝑖 + 1, 𝑗) and 𝑥(𝑖 − 1, 𝑗) correspond to the locations of computed fluxes one 
longitudinal gridbox east or west, respectively, than the point for which the divergence is 
computed. A one-sided difference can be used at the edges of the domain. 

We note that the averaging operator and divergence operator are linear operators, but their 
output is not linearly related to the vertical column enhancement over the background. That 

is, 𝐴[𝐹] ≠ 𝐴[Δ𝐼]𝐴[(𝑢, 𝑣)𝑇] and 𝐷[𝐹] ≠ 𝐷[Δ𝐼]𝐷[(𝑢, 𝑣)𝑇]. For the divergence operator, the 
following relation holds due to the product rule, 

𝐷[𝐹] = ∇ ⋅ 𝐹 =
𝜕(Δ𝐼𝑢)

𝜕𝑥
+
𝜕(Δ𝐼𝑣)

𝜕𝑦
= (∇(Δ𝐼) + (Δ𝐼)∇) ⋅ (

𝑢(𝑡)

𝑣(𝑡)
), 

which means that a remaining background field in vertical column enhancement over the 
background (e.g., Δ𝐼 + 400) would influence the result of the computed fluxes. This is why we 

must not use the total column image 𝐼 for the divergence method, but the total column image 

with the background subtracted, Δ𝐼 = 𝐺𝑠[𝐼] − 𝐺𝑏[𝐼], as in Section 3.1.2.1. For NO2 images, 
one could assume that the background field is zero, such that the signal enhanced over the 
background is equal to the measured signal itself. For CO2 images, we must apply this 
correction explicitly. 
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 Example using NO2 column data 

Figure 6 illustrates an example of the divergence calculation in the Highveld area (South 
Africa) based on TROPOMI NO2 data. The emissions caused by several power stations in the 
area are visible as enhancements in the divergence map (Figure 6, middle panel). The 
divergence approach enables the separation between several strong neighboring sources that 
might appear as mixed in the NO2 mean fields. 

 

Figure 6: TROPOMI NOx divergence calculated in the Highveld area (South Africa) for the year 

2019 with 𝟎. 𝟎𝟑∘ × 𝟎. 𝟎𝟑° grid size. 

To calculate source-specific emissions from the divergence fields, a peak fitting approach (as 
in Beirle et al., 2021) can be applied by obtaining the best-fitting parameters between sources 

in the computed field 𝐴[𝐷[𝐹(𝑡)]] and the following Gaussian function: 

𝐺(𝑥, 𝑦) =
𝑄

2𝜋𝜎𝑥𝜎𝑦
exp(−

(𝑥 − 𝑥0)
2

2𝜎𝑥
2 ) exp(−

(𝑦 − 𝑦0)
2

2𝜎𝑦
2 ) + 𝑚𝑥(𝑥 − 𝑥0) + 𝑚𝑦(𝑦 − 𝑦0) + 𝑏, 

where 𝑄 is the emission flux in units of kg/s, 𝜎𝑥 and 𝜎𝑦 describe the width of the 2-dimentional 

Gaussian function in the respective directions, and 𝑥0 and 𝑦0 indicate the location of the 
source. The terms 𝑚𝑥, 𝑚𝑦 and 𝑏 are used to define a linear background field. 

 

 Example using CO2 column data 

Similar to NO2, the divergence map can be calculated also for CO2. We make a small 
modification to the algorithm from Beirle et al. (2019, 2021) for the CO2 case, which has to do 
with the order in which the divergence operator 𝐷 and averaging operator 𝐴 are applied to the 

data. Both 𝐷 and 𝐴 are linear operators and thus commute, i.e., 𝐴[𝐷[𝐹(𝑡)]] = 𝐷[𝐴[𝐹(𝑡)]]. This 

property is used by Beirle et al. (2019, 2021) to first average all flux fields before computing 
the final divergence image. However, we found that the discrete operators are not 
commutative in the presence of missing pixels (due to, e.g., cloud cover). The issue is that the 
operator 𝐴 is defined to ignore missing data as denoted with NaN, e.g., 𝐴[{1,2,3, NaN}] = 2. 
This is a sensible choice for 𝐴, as it means that we only average those data where and when 

they are available. However, 𝐴 and 𝐷 cease to commute with this definition of the average, as 
they can sample different data distributions. We illustrate this property in two examples below. 

First, we consider a case where all data are present. Consider a flux 𝐹 at three consecutive 
locations 𝑥1, 𝑥2, and 𝑥3 at three separate instances in time 𝑡1, 𝑡2, and 𝑡3. We compute the 
divergence of the fluxes in the last column, and the average of the measurements in the last 
row. The bottom-right cell then computes the divergence based on the values in the last row, 

𝐷[𝐴[𝐹(𝑡)]], as well as the average of the computed divergence values as present in the last 

column, 𝐴[𝐷[𝐹(𝑡)]]. Both computed values are equal, as expected. 
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𝐹(𝑥1) 𝐹(𝑥2) 𝐹(𝑥3) 𝐷[𝐹] =

𝐹(𝑥3) − 𝐹(𝑥1)

2
 

𝑡1 0 15 14 7 

𝑡2 0 13 11 5.5 

𝑡3 3 17 16 6.5 

𝐴[𝐹(𝑡)] 1 15 13.66.. 
𝐷[𝐴[𝐹(𝑡)]] = 6.33.. 

𝐴[𝐷[𝐹(𝑡)]] = 6.33.. 

Second, we consider a case where 𝐹(𝑥3, 𝑡3) is missing. Again, we compute the divergence of 
the average versus the average of the divergence. Now, the values are not identical.  

 
𝐹(𝑥1) 𝐹(𝑥2) 𝐹(𝑥3) 𝐷[𝐹] =

𝐹(𝑥3) − 𝐹(𝑥1)

2
 

𝑡1 0 15 14 7 

𝑡2 0 13 11 5.5 

𝑡3 3 17 NaN 𝑁𝑎𝑁 

𝐴[𝐹(𝑡)] 1 15 12.5 
𝐷[𝐴[𝐹(𝑡)]] = 5.75 

𝐴[𝐷[𝐹(𝑡)]] = 6.25 

The reason for the difference in the computed values is simply that 𝐴[𝐹(𝑥1, 𝑡)] is computed 

using three values, whereas 𝐴[𝐹(𝑥3, 𝑡)] is computed using only two values. In other words, 

the average is computed over two slightly different distributions before computing 𝐷[𝐴[𝐹(𝑡)]]. 
By computing 𝐴[𝐷[𝐹(𝑡)]] instead, the average is always computed over the same distribution 
of points, not affected by the missing data. Hence, unlike Beirle et al. (2019, 2021), we will 
compute results for the CO2 emissions by computing the divergence over the flux fields first, 
which is then averaged over time. Tests have shown that this improves the divergence images. 

 

Figure 7: CO2 divergence calculated from the COSMO-GHG model simulations with 
𝟎. 𝟎𝟓∘ × 𝟎. 𝟎𝟓∘grid size. Only anthropogenic enhancements are considered. Positive values 
correspond with strong emissions sources like power stations (Boxberg, Jänschwalde, 
Lippendorf, Schwarze Pumpe, and Turów marked with B, J, L, SP, and T, respectively) and the 
city of Berlin. 
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Figure 7 illustrates an ideal case where the CO2 divergence is calculated from the CO2 fields 
for the year 2015 simulated by the COSMO-GHG model without added noise or a background 
field. Model simulations at 11:00 UTC are considered, assuming clear-sky conditions. The 
largest point sources, such as individual power stations (Boxberg, Jänschwalde, Lippendorf, 
Schwarze Pumpe, and Turów) and the city of Berlin are visible as enhancements in the 
divergence map. 

In general, the situation is more complicated than illustrated in Figure 7, as several aspects 
affect the divergence calculation. For example, the amount of available data is reduced due 
to the limited coverage of satellite observations and the persistence of cloudy conditions. The 
effect of clouds is more restricting for CO2 compared to NO2, since completely clear sky 
conditions are needed for a successful CO2 retrieval, while partially cloudy conditions (cloud 
fraction smaller than 30%) are considered suitable for reliable NO2 retrievals. In addition, the 
calculation of the CO2 divergence requires the removal of the background (about 400 ppm, 
but varying over time) to retain only the signal enhancement over the background.  The largest 
challenge is posed by the instrument noise, ranging between 0.5 and 1.0 ppm (Kuhlmann et 

al., 2020). 

 

Figure 8: Divergence calculation with different setups using SMARTCARB dataset. See text for 
an explanation. 

Figure 8 illustrates the divergence calculated using the SMARTCARB dataset with different 
setups. The divergence is calculated using a constellation of two satellites (Kuhlmann et al., 



CoCO2 2021  
 

D4.3 Documentation of plume detection and quantification methods 21 

2019) for the full year 2015, with data filtering for cloud free conditions. For reference, Figure 
8a shows the NOx divergence calculated from simulations with noise (standard deviation 

1.5 × 1015 molecules/cm2), without any background removal and with cloud fraction smaller 
than 0.3. Figure 8b shows the CO2 divergence based on simulations without background or 
noise, and with a cloud fraction limit of 0.01. Both NOx and CO2 divergence maps have similar 
spatial features, with enhancements close to the main emission sources, but the CO2 fields 
appear noisier and less sharp, as expected due to the longer lifetime and the more restrictive 
cloud fraction limit, which reduces the number of available observations.  With these setups, 
there are on average about 32 NO2 and 16 CO2 observations per 0.05∘ × 0.05∘ grid cell for the 
whole year. Figure 8c shows the CO2 divergence map after adding artificial noise (standard 
deviation 0.5 ppm) to the simulations. Figure 8d shows the CO2 divergence after adding a 
simulated background and subsequently removing an approximation of it by calculating the 

anomaly as 

XCO2(anomaly) = XCO2(observed) − XCO2(background), 

where the background is calculated as the daily median over the area covered in Figure 8. 
The background definition can be tuned case-by-case. Visually, the noise addition has a much 
larger effect on the divergence than the background addition (and removal). Figure 8e 
combines Figure 8c and d. Finally, in Figure 8f, the XCO2 data are denoised by using a 2D 
convolution with constant 5-by-5 kernel before removing the background and calculating the 
CO2 divergence. After denoising the data, the CO2 divergence in Figure 8f is similar to Figure 
8b and Figure 8d. Denoising thus appears to be an essential component in the CO2 divergence 
calculations. Different denoising strategies are further discussed in Section 4.1.1. 

 

4 Potential issues and suggested solutions 

4.1 Difficulties in detection 

 Improving the signal-to-noise ratio / Denoising 

The quality of the input satellite images is of paramount importance for the plume detection 
and quantification algorithms. Obviously, lower noise levels require less filtering to enhance 
the signal, and allow more plumes to be detected. Regardless, in Section 3, it was mentioned 
that typically methods are used to suppress the noise. Below, some of these options are given 
in more detail. 

 

4.1.1.1 Mean filter 

If pixels are on average noise-free, but simply contain some amount of random noise added 
to each pixel, then taking the local mean may partially counteract this noise on pixels too. 
Some examples of local surrounding pixel shapes are given in Figure 9. A cheap way to 
compute the (local) mean filtered images is to define a small array which sums to one, and 
convolve this 'kernel' with the image. For example, convolution of an image with the kernel 

𝐶 =

[
 
 
 
 
0 0 1/13 0 0
0 1/13 1/13 1/13 0

1/13 1/13 1/13 1/13 1/13
0 1/13 1/13 1/13 0
0 0 1/13 0 0 ]

 
 
 
 

, 

corresponds to the average of the centre pixel and 12 pixels surrounding it (corresponding to 
the case '13' in Figure 9).  

Unfortunately, mean filters have a drawback, which is that they may average out the "noise", 
but also the "signal". For example, if the local mean is computed over a patch that contains 
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both the plume and the background, the computed value corresponds neither accurately to 
the plume, nor accurately to the background. 

 

Figure 9: A selection of example shapes that can be used to estimate the local mean or local 
median based on surrounding pixels. Figure from Kuhlmann et al. (2019). 

 

Figure 10: Effect of mean filtering, with the left panel showing the true CO2 field, the middle-left 
panel showing a noisy realization of the true field (with discarded data in white), and the middle-
right panel shows the mean filtered solution using shape '13' from Figure 9. The rightmost panel 
shows the residual between the mean filtered and true CO2 fields. 

 

4.1.1.2 Gaussian smoothing 

As an alternative to a mean filter, one can convolve the image with a kernel that weighs 
locations closer to the centre higher than pixels further away from the centre. For example, 
this can be done using weights drawn from a 2D Gaussian distribution and normalized again 

such that the total sum of the kernel equals one. 

Convolution with a Gaussian kernel is identical to application of a digital low-pass filter. This 
clarifies its effect immediately: high-frequency noise is removed, but any high-frequency signal 
is also affected. For example, if a plume is only a few pixels wide, it may be smoothed out 
considerably by such a Gaussian based filter. Again, this technique can destroy significant 
"signal" in the process of removing the "noise". This can be observed in Figure 11, which 
shows a better denoised field compared to Figure 10, as can for example be seen in the lower 
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fifth of the image, but the resulting field still appears considerably more smoothed compared 
to the 'true' CO2 field. 

 

Figure 11: Effect of Gaussian smoothing, with the left panel showing the true CO2 field, the 
middle-left panel showing a noisy realization of the true field (with discarded data in white), and 
the middle-right panel shows the Gaussian smoothed solution for a standard deviation in both 
horizontal and vertical directions of 𝝈 = 𝟏 pixel; the convolution array has values following 
shape '13' from Figure 9. The rightmost panel shows the residual between the Gaussian 
smoothed and true CO2 fields. 

 

4.1.1.3 Median filtering 

Mean filtering and Gaussian smoothing have an additional drawback, which is that they are 
not robust statistics. The presence of a single outlier (a very high or very low value) may 
significantly skew the result of the mean or Gaussian filtering operation. A more robust 
operation is the median, which will not change much if one of the values is replaced with a 
very high or low value. This property also has its drawback, as it means that application of a 
median filter will filter out small features, such as small plumes. An example is shown in Figure 
12, where the features on the bottom fifth part of the image are less clearly visible than in 
Figure 11. Median filtering, on the other hand, could be a viable option to estimate a 
background image, if a filter width is chosen that is several times larger than the size of 

individual plumes. 

 

Figure 12: Effect of median filtering, with the left panel showing the true CO2 field, the middle-
left panel showing a noisy realization of the true field (with discarded data in white), and the 
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middle-right panel shows the median filtered output; the local array used for the median filter 
has values following shape '13' from Figure 9. The rightmost panel shows the residual between 
the median filtered and true CO2 fields. 

 

4.1.1.4 K-SVD 

As an alternative to these classical methods of suppressing noise, two more modern denoising 
methods from the field of Computer Vision were explored. These methods require that the 
satellite image can be represented using combinations of a small set of base patches (e.g., 

8×8 pixels). The assumption is that the patches in the figure repeat multiple times, whereas 
the noise is not repeating. This assumption is well founded for many natural pictures, and 
holds for plumes as well: a plume may contain multiple patches where the plume is oriented 

in the same direction; or multiple plumes are oriented in the same direction. 

For K-SVD (which stands for K-means clustering followed by singular value decomposition 
[SVD]), the steps come down to trying to establish a small "dictionary" of image patches which 
closely represent the original input signal (Aharon, Elad, & Bruckstein, 2006). The K-means 
step is used to find clusters of similar-looking patches, to select possible entries for the 
"dictionary" of patches, while the SVD step is used to reconstruct the image with a small set 
of dictionary patches. 

We use the algorithm in multichannel form, to take the CO2 and NO2 images into account 

jointly. What that means is that it learns to find a sparse set of 8 × 8 × 2 patches in both the 
CO2 and NO2 images. This means that the more information-rich selection of NO2 patches 
(due to the higher signal-to-noise ratio of these measurements) is carried over onto the 

corresponding CO2 patches.  

An example of the procedure is shown in Figure 13. Note how plumes appear sharper in this 
image compared to the other techniques. For example, the plume with its source around 
coordinate 75 in the horizontal direction and 500 in the vertical direction can now be 
distinguished, while this plume was not visible using the previous techniques for improving the 
signal-to-noise ratio. A test carried out on the entire SMARTCARB dataset shows that the 
peak signal-to-noise ratio (PSNR) compared to the noise-free inputs increases by +7 dB when 
moving from the noisy CO2 image to the K-SVD reconstructed image using both the CO2 and 

NO2 images as input. 

 

Figure 13: Effect of K-SVD, with the left panel showing the true CO2 field, the middle-left panel 
showing a noisy realization of the true field (with discarded data in white), and the middle-right 
panel shows the K-SVD output (with setting 𝝈 = 𝟐𝟎). The noisy NO2 image used along with the 
noisy CO2 image is not shown. The rightmost panel shows the residual between the K-SVD 
output and true CO2 fields. 
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4.1.1.5 BM3D 

The second of two Computer Vision techniques that was tested is BM3D (which stands for 

Block Matching and 3D filtering; Dabov et al., 2007). In this method, 𝑁 similar image patches 
(e.g., of size 8 × 8 pixels) are extracted from the input image to form a block (e.g., of size 

8 × 8 × 𝑁). These blocks are jointly denoised following three steps: 

1. The blocks of patches are domain transformed (e.g., a 3D wavelet transform, a 3D 
Fourier transform, …); 

2. A thresholding step is applied to the transformed blocks, i.e., coefficients falling below 
a threshold are removed, to retain only the strong components; 

3. The resulting block is transformed back to the image domain. 

This step is carried out for each patch around each input pixel. The jointly denoised image 
patches (from steps 1-3 above) are then aggregated into a first estimate of the denoised 
image. Then, the steps are carried out again, selecting similar image patches now based on 
the first estimate of the denoised image, and applying a Wiener filter rather than a hard 
thresholding step. The full algorithm is diagrammatically shown in Figure 14. 

We again used a multichannel implementation of this algorithm to exploit the joint information 
in the CO2 and NO2 images. In this instance, that corresponds to selecting the locations of 
similar looking patches from a weighed image of NO2+CO2, where both images have first been 
normalized to cover the same dynamic range. The denoising steps are then performed on the 
combined image as well as the individual CO2 or NO2 images, which are combined at the end 
to estimate the denoised CO2 and NO2 images. As with K-SVD before, the selection of 
information-rich patches is helped by the higher signal-to-noise ratio of the NO2 images. 

An example of the procedure is shown in Figure 15. We can see that the BM3D algorithm 
obtains a greatly denoised image, considering the high level of noise when compared to the 
input image. A test carried out on the entire SMARTCARB dataset shows the PSNR 
improvement is +13 dB when compared the noisy input images. 

 

Figure 14: A schematic explanation of BM3D. In stage 1, similar looking patches are 
collaboratively denoised to produce a first denoised estimate image. In stage 2, similar looking 
patches are selected from the first estimate, and together with the corresponding patches from 
the original input form two blocks. Using a Wiener filter, the original image patches are 
denoised, leading to the final denoised image. The steps are carried out for all patches in the 
image. 



CoCO2 2021  
 

D4.3 Documentation of plume detection and quantification methods 26 

 

Figure 15: Effect of BM3D, with the left panel showing the true CO2 field, the middle-left panel 
showing a noisy realization of the true field (with discarded data in white), and the middle-right 
panel shows the BM3D output (with 𝝈 = 𝟐𝟎). The noisy NO2 image used along with the noisy CO2 
image is not shown. The rightmost panel shows the residual between the BM3D output and true 
CO2 fields. 

As a final remark, we will of course not be able to compute the difference between the 'true' 
and denoised CO2 images in practice. Instead, we can subtract the noisy CO2 and filtered 
images, which should contain instrument noise primarily, not plume-shaped residuals. 

 

 Cloud cover (missing data interpolation) 

When a satellite image pixel is covered by a cloud cover fraction higher than 1% (for CO2 
satellite images) or 30% (for NO2 satellite images), no reliable measurement can be made of 
the corresponding chemical species at that pixel. In practice, this has severe consequences, 
as was also shown in the SMARTCARB project (Kuhlmann et al., 2019, 2020, 2021): for a 
constellation of two satellites that operates for a full year, on average only 32 NO2 and 16 CO2 
observations per 0.05∘ × 0.05∘ grid cell are available. This means that plumes will not always 
be measured fully. Linking back to the plume detection algorithms described in Section 3.1.1, 
we then also remark that localized cloud cover can split one plume body into two plume bodies; 
and the plume detection algorithm will discard the plume body not connected to the source 
point. For this purpose, we have studied modern Computer Vision techniques to connect the 
plumes where data is otherwise missing, also known as 'inpainting'. Promising results were 
obtained with a neural network approach following that described in Zeng et al. (2021). The 
network is trained on SMARTCARB images of NO2 (as this species contains the most usable 
pixels available, thus contains the most data in each image to base the inpainting on). 
Additional input is the cloud cover modelled by the SMARTCARB dataset, and an average of 
the 10 and 100 m altitude wind speeds from ERA-5, which is turned into streamlines (as the 
neural network appeared to respond better to image inputs rather than the raw wind data 
fields). For other factors, we refer to Zeng et al. (2021) to explain the general setup of the 
neural network and training procedure.  

To assess the inpainting performance, we compute the error by comparing the true image 
𝐼𝑡𝑟𝑢𝑒 to the inpainted image 𝐼𝑖𝑛𝑝𝑎𝑖𝑛𝑡𝑒𝑑, weighed by the number of cloudy pixel points, 

𝐸 =
∑ |𝐼𝑡𝑟𝑢𝑒(𝑖, 𝑗) − 𝐼𝑖𝑛𝑝𝑎𝑖𝑛𝑡𝑒𝑑(𝑖, 𝑗)|𝑖,𝑗

10−10 + ∑ 𝑐𝑙𝑜𝑢𝑑𝑐𝑜𝑣𝑒𝑟(𝑖, 𝑗)𝑖,𝑗
, 

where 𝑐𝑙𝑜𝑢𝑑𝑐𝑜𝑣𝑒𝑟 is an image of the same size as 𝐼𝑖𝑛𝑝𝑎𝑖𝑛𝑡𝑒𝑑, which equals 1 for cloudy 

(inpainted) pixels, and 0 otherwise. Note that 𝐼𝑡𝑟𝑢𝑒 and 𝐼𝑖𝑛𝑝𝑎𝑖𝑛𝑡𝑒𝑑 differ only at the cloudy pixels, 
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and are identical otherwise. By summing the above error functional for 1528 extracts from the 
SMARTCARB dataset, and dividing through 1528, we obtain a mean error of 5.9176×1015 
molecules/cm2. When not using the wind dataset in the same neural network, the mean 
absolute error doubles. Hence, the wind field carries relevant information for the neural 
network to fill the missing data sections. An example is shown in Figure 16. 

We note that, at this stage, we do not intend to use the inpainted images quantitatively, i.e., 
to use the inpainted data for estimation of emissions. We merely propose this as a technique 
to connect otherwise disjointed plume bodies in the plume detection algorithm described thus 
far. The effect of this technique on the plume detection and quantification performance has 
not been tested yet, but this will be done in the future. 

We note that training the neural network requires up to a day; but using the neural network for 
inpainting of, e.g., a 123×123 pixel image as shown in Figure 16 below takes much less than 
a second. Hence, it still is still relatively lightweight computationally. 

    

Figure 16: An example of inpainting. The left-most image shows a ground-truth NO2 image 
without cloud cover. The second-left image shows this ground truth image covered with clouds 
(shown in beige); hence, all the beige parts of the image must be filled in by the inpainting 
algorithm. The second-right image shows the wind field as taken from ERA-5. The right-most 
image corresponds to the inpainted image. We note that the algorithm has correctly connected 
previously disjoint plume bodies, despite the fact that a large portion of the image was covered 
by clouds. 

 

 Designation of connected plumes 

The plume detection & quantification algorithm described in Section 3.1.1.2 will dismiss plume 
bodies that are connected to two or more sources rather than to a single source. These plumes 
may be overlapping while located next to each other (i.e., oriented in parallel, mixing into each 
other), or a plume may be detected for such a long distance that it overlaps with a plume 
located (much) further downstream. The reason for the rejection of these plume bodies is 
clear: the fluxes for such a connected plume body cannot be ascribed to a single source and, 
furthermore, assumptions of constant fluxes over the entire plume body or approximately 
Gaussian-shaped cross-sections are not met in these instances. 

We plan to address this issue in the coming year, to maximize the number of plume 
measurements that can be realized by the algorithm. For example, if one plume body overlaps 
with two or more known source locations, we can use an estimate of the wind field to, at the 
very least, quantify the upstream part of one or more plumes, before they mix (see Figure 17). 
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Figure 17: A schematic diagram showing two plumes (in blue hashed form and blue filled 
form). The two plume bodies are 'connected', in the sense that a plume detection algorithm 
that would detect both the hashed and filled blue bodies entirely would not detect two 
separate plume bodies, but the union of them both. However, when moving upstream from 
points in the plume body (shown with the black arrows), we end up at two separate plume 
sources. One can at least quantify the unmixed parts of the plumes in these upstream regions, 
indicated with the two thick black boxes. 

When it comes to detecting and quantifying the individual contributions of the plumes once 
they have mixed, some assumptions begin to break down (such as an approximately 
Gaussian-shaped cross-sectional profile). However, we will explore whether or not the mixed 
portion of the plumes can also be used for plume detection and quantification. 

 

4.2 Potential sources of error 

 Bias through use of synthetic data 

The methods described in Section 3.1.1.2 and Section 3.2, as well as the denoising methods 
of Section 4.1.1 and the inpainting method of Section 4.1.2 have been tested extensively on 
the SMARTCARB dataset. Parameters have been specifically tuned to perform well on this 
dataset. There is thus a chance that the methods will have a different performance when used 
on other data. This assertion can be partially tested in the coming year when the performance 
of the described plume detection and quantification methods will be tested on a library of 
plumes under development in Work Package 4.1. A larger OSSE dataset with an accurate 
noise model, including systematic errors not included in the SMARTCARB dataset, would be 
useful to test how well the method will work on the future CO2M data, but currently a full error 
parametrization considering the aerosol information from the multi-angle polarimeter (MAP) is 
available for only a few days for a domain around the city of Berlin. 

 

 Background estimation 

As described in Section 3.1.1.2 and Section 3.2, the quantification of plumes is heavily 
dependent on an accurate estimate of the background field, such that only the signal 
enhancement over the background is used to estimate the emission fluxes. The complexity of 
this problem is shown in Figure 18: the background field of CO2 or NO2 'underneath' the plume 
enhancement can be strongly varying and strongly heterogeneous. As the satellite image 
consists only of the combined data (enhancement + background), it essentially forms an 
underdetermined system: there are more unknowns than there are equations to link them. 

wind 
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Figure 18: This figure shows two examples of estimated backgrounds using a median filter (a, 
d) and true modelled backgrounds (b, e), and the difference between the two background fields 
(c-f). Note how the true background fields can contain strong CO2 gradients, or plume-like 
features that can be smaller or thinner than plumes under consideration. Conversely, the 
estimated background is a smooth field. This, effectively, means that the signal enhancement 
over the background can be over- or underestimated. 

A large median filter is one option to estimate the background, which as outlined above, is a 
robust statistical technique to, at the very least, get a coarse idea of the background. After all, 
a typical image will contain more background pixels than plume pixels. Other techniques from 
computer vision were tested, such as a Rolling Ball algorithm, but this method tends to 
overestimate the background as it is still influenced by the presence of plumes. Smoothing 
methods such as a low-pass filter suffer from the same problem. Hence, this is not a problem 
that can be fully solved in an unbiased way, and requires further research. Ideally, deviations 
from a smooth background are not systematic, so that errors in estimated emissions average 
out over many quantifications. However, there could also be systematic influences, for 
example emissions from a nearby source that often interfere with the plume of the targeted 
source. In case of a city, biospheric fluxes could also introduce systematic errors in the 
estimated background since vegetation density is typically different inside a city from its 
surroundings. This may result in biospheric CO2 signals that are spatially correlated with the 

anthropogenic CO2 plume. 

 

 Uncertainty in wind properties 

All data-driven emission quantification methods depend heavily on having accurate data 
regarding the wind speed and, to a lesser degree, wind direction. For methods applied to 
images from single overpasses, wind direction can be estimated from the direction of the 
column plume, but wind speed needs to be obtained from other sources of information. Unless 
there are observations of winds available directly at the source (e.g. from a wind-LiDAR), wind 
speeds will have to be obtained from a weather analysis product such as ECMWF's ERA5 

reanalysis. 

In order to obtain an unbiased emission estimate, an effective wind speed needs to be 
determined for each plume, which corresponds to the mean transport speed of the plume. If 
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the satellite total column measurement is equally sensitive to CO2 molecules at all altitudes in 
the atmosphere, the effective wind speed can be calculated as 

∫ 𝑈𝐶𝑑𝑧
𝑧𝑇
0

∫ 𝐶𝑑𝑧
𝑧𝑇
0

⁄ , 

where U is the along-plume wind speed, C is the cross-wind integrated plume concentration 
(i.e. concentration [μg/m3] of CO2 above background), and zT is a freely selected altitude above 
the top of the plume. The effective wind speed is thus the vertically averaged wind speed 
weighted by the vertical profile of the CO2 concentration in the plume above background. If 
the vertical sensitivity of the measurements is not uniform, the product of C times the 
averaging kernel has to be used instead of C. The effective wind speed can change in the 
across-plume direction also, in which case also horizontal weighing should be used. 

Unfortunately, the vertical distribution of CO2 in the plume is usually not known. Some 
information on plume height may be obtained by comparing the direction of the plume with the 
direction of the analysed winds at different altitudes, but this is only possible if there is a strong 
directional shear in the winds and if the analysed winds are accurate. For point sources, a 
better approach is to estimate the plume altitude based on plume rise calculations. The 
effective emission height can be much higher than the geometric height of a stack because of 
the momentum and buoyancy of the flue gas. In general, plume rise depends on stack 
geometry (height and diameter), flue gas properties (temperature, humidity, exit velocity) and 
on meteorological conditions (wind speed, atmospheric stability) (Bieser et al., 2011; Brunner 
et al., 2019). When this information is not available, typical stack parameters according to 
Pregger and Friedrich (2009) may be used. In case of a well-mixed atmospheric boundary 
layer, the exhaust plume will become mixed rather uniformly throughout the depth of the 
boundary layer with increasing distance from the source. In this case, a pressure-weighted 
mean wind speed in the boundary layer might be adequate. For emissions from a city, this 

could also be a viable approach. 

The uncertainty in the effective wind speed will be determined by the uncertainty in the 
analysed winds and by the uncertainty in the vertical distribution of CO2 in the plume. Clearly 
more research is needed to quantify these uncertainties and to make optimal choices for 

different types of emission sources and for different weather conditions. 

 

 Inability to deal with the temporal component of the plume 

The downstream part of the plume was not emitted at the same time as it was captured on a 
satellite image, but at an earlier time. In this sense, time and space are interlinked dimensions, 
and the plume thus contains both a spatial and temporal component. If emissions vary over 
time, we should thus not necessarily expect constant fluxes over the length of the plume, 
which is however exactly what is done in instantaneous plume interpretation methods (Section 
3.1). To fix this problem, atmospheric transport models are required to link the spatial and 
temporal dimensions to each other. Such atmospheric transport models are however explicitly 
dismissed in the methods described in this Deliverable, as we restrict ourselves to lightweight 
methods only. Thus, this problem will not be dealt with. We note that the time-averaged 
methods (Section 3.2) do not suffer from this problem, as in the end only the fluxes at the 
location of the source will in theory average out in such a way that they produce a non-zero 
signal at the source, and not elsewhere. An approach based on neural networks will not 
necessarily suffer from this problem either, if it can learn to infer the atmospheric transport 
dynamics from the input data. 
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 A limited ability to detect spatially structured errors in the images 
that correlate with surface and atmospheric conditions 

Satellite XCO2 or NO2 images can contain errors with spatial patterns that are correlated with 
uncertainties in atmospheric conditions (molecular species, other scatterers, aerosols, water, 
pressure, temperature, cloud cover, etc.) or surface properties (albedo, most importantly). 
These are due to uncertainties in the assumed atmospheric and surface conditions used in 
the retrievals, and cause so-called systematic errors in the retrieval process (in the inversion 
of the radiative transfer). At present, these spatially correlated errors are neither estimated nor 
provided in the satellite data products. The lightweight methods presented here rely on the 
data present in the satellite image only and are therefore unable to detect or correct for this 
type of error in the data. 

The meteorological and/or chemistry-transport models (meteo-CTM) used in a model-based 
approach can estimate some information about these surface and atmospheric conditions, 
and can thus partly support the identification of spatial patterns in the XCO2 and NO2 images 
which could be erroneous and which should thus probably be discarded. However, the 
patterns depend also on the retrieval assumptions and the radiative transfer computations and 
therefore the identification of the systematic errors using only meteo-CTMs remains limited. 
Therefore, at present this does not appear to be a critical advantage of the model-based 
approach compared to the lightweight methods. 

 

5 Conclusion 

This document outlined a series of promising and very different "lightweight" (without requiring 
atmospheric transport model runs) methods to detect and quantify plumes in satellite images 
that are expected to be produced by the future CO2M satellite constellation, which either work 
on single overpass satellite images, or on the temporal average of multiple overpasses over 
a single source. After a detailed description of the methods, a set of issues was discussed that 
are being actively addressed within the CoCO2 project to improve the performance of the 
methods. Notable problems that are actively worked on are improving the signal-to-noise ratio 
and improving estimates of the wind speed and direction, which are required for accurately 
computing the emission fluxes. Issues that are harder to overcome are the low number of 
expected plume images due to full cloud coverage, and a difficulty in estimating the 
background concentration fields with high spatial resolution. The limitation that these 
examples have mostly been based on one synthetic dataset may be overcome with the use 
of a library of plumes developed in Task 4.1, which will be detailed in Deliverable 4.2 due at 
the end of 2022. Furthermore, we remark that this document only describes the various 
methods, while an evaluation of the performance of the different methods will be provided in 
Deliverable 4.4, also due at the end of 2022. 

The methods developed here are intended to be used eventually in the operational monitoring 
and verification system (MVS) of the Copernicus programme, to quickly provide estimates of 
plume and city emissions when they can be observed.  
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