

WELCOME TO THE COCO2 1ST GENERAL ASSEMBLY

From science innovation to operational services

Richard Engelen, Project Coordinator ECMWF 16/11/2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958927.

Period: January 2021 – December 2023

With support from:

CO₂ Monitoring Task Force

External Expert Group

Inventory Agency Advisory Board

CoCO2 reviewers

HaDEA

Understanding our emissions and how they change

CO₂ emission estimates based on nationally reported data

Observing atmospheric composition from space is a rapidly developing field. Many exciting new instruments, large and small, are being developed and launched.

Can we use Earth observations to improve our knowledge of anthropogenic emissions?

contains modified Copernicus Sentinel data (2017), processed by KNMI/ESA NO₂ tropospheric columns observed by Sentinel-5p

Challenges of observation-based emission monitoring

Satellites do not measure emissions directly; they measure the impact of emissions on the atmosphere.

Satellites see only the total impact of anthropogenic and natural effects.

Earth System models are used to translate the observations into emission estimates.

Observations

Max altitude: 100 m a.g.l. Temporal resolution ca. 1 hour Total 26 profiles from 9.02 1pm to 10.02 12pm

Measurements: • Meteorology • CO2 • CH4 • PM10

CoCO2: in-situ and ancillary data needs

Within WP7 we're collecting and documenting the in-situ and ancillary data requirements from across the project, so we can ensure that these data streams are available when they are needed. The goal is to identify and mitigate potential bottlenecks down the road, as we move towards an operationalized service.

We need to consider these data needs in terms of methodology, accuracy, data quality, spatial-temporal resolution, and timeliness. There might be different requirements on the same type of data at different point in the system, e.g. a fast-track product needed for near-real-time assimilation vs. a fully quality-controlled product used for evaluation and quality control later in the processing chain.

Please respond to this survey based on your activity in a given task. If you are involved in different tasks, please fill out the survey again for each task.

Note: We are not limiting this data collection activity to strictly in-situ data (or even just suborbital data, the Copernicus definition of in-situ), but rather including additional ancillary data that may come from satellite, such as night lights measurements, or MODIS reflectances.

The survey consists of three parts:

1. the first collects some minimal information about the task and who's doing it

DLR, AGH, FORTH

CoCO2 – Prototype system for a Copernicus CO₂ service

:

Priors

Development of weekly countrydependent temporal profiles using TomTom congestion statistics. BSC

Annual for 1961-2019, 0.08° × 0.08°

Extended from Deng, Ciais et al., ESSDD, 2021 LSCE

Global system

Global emission estimation capabilities in **ECMWF**'s IFS are being tested on CH₄ observations from Sentinel-5p TROPOMI.

Change in CH₄ emissions posterior/prior

Local systems

New techniques to detect & separate (overlapping) plumes & characterize the background; tests on the SMARTCARB NO_x / CO₂ simulations.

EMPA

- Simulations of NO_x and
- CO₂ plumes.
- Wageningen University & Research

Benchmarking for uncertainty estimation

- The Farquhar scheme is a biogeochemical photosynthesis model with a more mechanistic representation of processes than current empirical A-gs model. It also allows the use of Solar Induced Fluorescence (SIF) observations to constrain GPP (Global Primary Production).
- Large reduction in RSME and bias of GPP against FLUXNET observations.
- GPP is more realistic, but increased with respect to A-gs
- This means that the Respiration (R_{eco}) needs to be revised as well to optimize the net flux.

Policy-relevant products

Annual CO_2 flux from the AFOLU sector in ten large countries or groups of countries estimated by the 1- σ uncertainty envelope of the two CAMS atmospheric inversions.

In situ-based estimate Satellite-based estimate UNFCCC estimate

.SCE	.S	С	Ε	
------	----	---	---	--

Moving forward: from science to services

Today

Session 1: 10:00 - 12:00 UTC

Time	Торіс	Presenter
10:00 - 10:15	CoCO2 welcome & introduction	Richard Engelen
10:15 - 10:30	Welcome from the Commission	Hugo Zunker (DG-DEFIS)
10:30 - 10:55	WP2 highlights	Hugo Denier van der Gon & Greet Maenhout
10:55 - 11:20	WP3 highlights	Wouter Peters & Anna Agustí-Panareda
11:20 - 11:45	WP4 highlights	Dominik Brunner & Gregoire Broquet
11:45 - 12:00	Discussion	Gianpaolo Balsamo (moderator)

Session 2: 13:00 - 15:00 UTC

Time	Торіс	Presenter
13:00 - 13:25	WP5 highlights	Marko Scholze & Sander Houweling
13:25 - 13:50	WP6 highlights	Frédéric Chevallier & Nicolas Bousserez
13:50 - 14:15	WP7 highlights	Werner Kutsch & Julia Marshall
14:15 - 14:40	WP8 highlights	Glen Peters & Han Dolman
14:40 - 14:50	WP9 highlights	Daniel Thiemert & Richard Engelen
14:50 - 15:00	Discussion	Gianpaolo Balsamo (moderator)

This presentation reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958927.